PROYECTO DE DIAGNÓSTICO TÉCNICO DEL ACUEDUCTO COMUNITARIO SANTIAGO LONDOÑO, EN EL MUNICIPIO DE DOSQUEBRADAS RISARALDA.

ASOCIADOS A SALUD PÚBLICA DE COMUNIDADES USUARIAS

Estudiantes:
DIANA CAROLINA ORTIZ VILLA
STEPHANY BOLÍVAR MAZUERA

Director:
DANIEL ALBERTO LERMA ARIAS

UNIVERSIDAD LIBRE SECCIONAL PEREIRA
TRABAJO DE INVESTIGACIÓN
PEREIRA FEBRERO
2014
TABLA DE CONTENIDO

1 INTRODUCCION ... 1

2 PLANTEAMIENTO DEL PROBLEMA. ... 3

3 JUSTIFICACIÓN... 6

4 OBJETIVOS ... 7

4.1 OBJETIVO GENERAL: .. 7

4.2 OBJETIVOS ESPECÍFICOS: ... 7

5 MARCO REFERENCIAL ... 8

5.1 MARCO CONCEPTUAL ... 8

5.1.1 Sistema de acueducto ... 8

Componentes del sistema de acueducto: ... 9

5.1.2 Conceptos básicos asociados con el tratamiento del agua 16

5.1.3 Descripción de los componentes de filtración en múltiples etapas: 20

5.1.4 Conceptos básicos asociados con el tratamiento del agua 26

Desinfección: .. 26

5.1.5 Catastro de redes: .. 30

5.1.6 Estimación de la población: ... 32

5.1.7 Dotación neta ... 32
5.1.8 Dotación bruta.. 33

5.1.9 Demanda: .. 33

5.2 MARCO DE ANTECEDENTES.. 35

5.2.1 Antecedentes Cuenca Del Río Otún .. 38

5.3 MARCO GEMOGRÁFICO. .. 48

5.3.1 Ubicación.. 48

5.3.2 Red Hídrica Superficial ... 49

5.3.3 Geomorfología.. 51

5.3.4 Ubicación Acueducto Comunitario Santiago Londoño Vela I y Vela II 52

5.4 MARCO DEMOGRÁFICO .. 53

5.4.1 Población Abastecida: .. 53

5.4.2 Estratificación ... 53

5.4.3 Servicio público de Acueducto: ... 54

5.5 MARCO HISTÓRICO .. 55

5.6 MARCO LEGAL ... 56

5.6.1 Normas de ordenamiento de las cuencas hidrográficas... 56

Estas normas hablan del planeamiento del uso y manejo sostenible de los recursos renovables:...... 56

5.6.2 Normas que rigen el desarrollo administrativo y operacional de los acueductos comunitarios:.. 59
5.6.3 Reglamento técnico para el sector de agua potable y saneamiento básico, RAS 2000. 62

6 METODOLOGIA ... 65

6.1 METODOLOGÍA CUENCA HIDROGRÁFICA .. 65

6.2 METODOLOGÍA DEL SISTEMA DE ACUEDUCTO 67

 6.2.1 Descripción general de la empresa Prestadora de Servicio: 67

 6.2.2 Descripción de la infraestructura actual del sistema de acueducto: 67

 6.2.3 Descripción de los componentes del sistema de acueducto: 67

6.3 METODOLOGÍA INDICADORES DEL SERVICIO DE ACUEDUCTO: 69

 6.3.1 Medición .. 69

 6.3.2 Cobertura de redes: ... 69

 6.3.3 Continuidad del servicio: .. 69

 6.3.4 Calidad del agua: ... 70

 6.3.5 Dotación: .. 70

6.4 METODOLOGÍA CUADRO DE DISCUSIÓN ... 70

 6.4.1 Componente ... 70

 6.4.2 Estructura Actual ... 70

 6.4.3 Conclusiones .. 70

 6.4.4 Recomendaciones ... 71
6.4.5 Prioridad

7 DESCRIPCIÓN DEL ESTADO Y FUNCIONAMIENTO DE LA INFRAESTRUCTURA EXISTENTE

7.1 PRESTADOR DEL SERVICIO DE ACUEDUCTO

7.2 DESCRIPCIÓN DEL SISTEMA DE ACUEDUCTO

Descripción de los componentes del sistema de acueducto:

Bocatoma:

7.2.1 Captación:

7.2.2 Desarenador:

7.2.3 Conducción:

7.2.4 Planta de Tratamiento de Agua potable - PTAP

7.2.5 Filtros Lentos de arena

7.2.6 Tanque de cloración:

7.2.7 Almacenamiento:

7.2.8 Red de distribución:

7.3 INDICADORES DEL SERVICIO DEL ACUEDUCTO

7.3.1 Cobertura de redes

7.3.2 Macromedición y micromedicion:

7.3.3 Continuidad en el servicio
ÍNDICE DE FIGURAS

FIGURA 1. ILUSTRACION DE LOS CONCEPTOS DE MULTIPLES ETAPAS. DOSQUEBRADAS, 2014. .. 4815

FIGURA 2. ESQUEMA SISTEMA DE TRATAMIENTO POR FILTRACION EN MULTIPLES ETAPAS. DOSQUEBRADAS, 2014. 21

FIGURA 3. ESQUEMA ISOMETRICO DE UN FILTRO GRUESO DINAMICO. DOSQUEBRADAS, 2014. .. 22

FIGURA 4. CORTE ISOMETRICO DE UN FILTRO GENDENTE EN CAPAS. DOSQUEBRADAS, 2014. .. 23

FIGURA 5. ESQUEMA ISOMETRICO DE UN FILTRO DESCENDENTE EN SERIE. DOSQUEBRADAS, 2014. ... 24

FIGURA 6. COMPONENTES BASICOS DE UN FILTRO LENTO EN ARENA CON CONTROL DE ENTRADA. DOSQUEBRADAS, 2014. 4825

FIGURA 7. DIVISION DE LAS SUBCUENCAS DEL RIO OTUN. DOSQUEBRADAS, 2014. .. 39

FIGURA 8. MICROCUENCAS DEL MUNICIPIO DE DOSQUEBRADAS, 2010. .. 40

FIGURA 9. UBICACION MUNICIPIO DE DOSQUEBRADAS BARRIO SANTIAGO LONDOÑO. DOSQUEBRADAS, 2014. 48

FIGURA 10. DIVISION DE LA CUENCA EN TRAMOS. DOSQUEBRADAS, 2014. .. 4850

FIGURA 11. UBICACION ACUEDUCTO COMUNITARIO SANTIAGO LONDOÑO. DOSQUEBRADAS- RISARALDA COLOMBIA. DOSQUEBRADAS, 2014. .. 52

FIGURA 12. ESQUEMA GENERAL DEL ACUEDUCTO COMUNITARIO SANTIAGO LONDOÑO. DOSQUEBRADAS, 2014. 72

FIGURA 13. ESQUEMA GENERAL DE LA BOCATOMA. DOSQUEBRADAS, 2013. .. 73

FIGURA 14. FUENTE DE ABASTECIMIENTO QUEBRADA SAN JOSE. DOSQUEBRADAS, 2013. .. 73

FIGURA 15. FUENTE DE ABASTECIMIENTO QUEBRADA SAN JOSE. DOSQUEBRADAS, 2013. ... 74

FIGURA 16. CAPTACION LATERAL. DOSQUEBRADAS, 2013. .. 4874

FIGURA 17. CANAL ABIERTO. DOSQUEBRADAS, 2013. .. 75
ÍNDICE DE CUADROS

CUADRO 1. PARAMETROS GENERALES DE LA MICROCUENCA DE LA QUEBRADA SAN JOSE DOSQUEBRADAS – RISARALDA 41

CUADRO 2. SITUACIONES AMBIENTALES GENERALES EN DIFERENTES COMPONENTES DE LA MICROCUENCA 41

CUADRO 3. DIAGRAMA HISTORICO DE PATOLOGIAS DE ORIGEN HIDRICO REPORTADOS N E BARRIO SANTIAGO LONDOÑO 46

CUADRO 4 REPORTE DE RESULTADOS EXTERNOS EN EL ACUEDUCTO COMUNITARIO .. 47

CUADRO 5. POBLACION MUNICIPIO DE DOSQUEBRADAS – RISARALDA DANE CENSO 2005 .. 49

CUADRO 6. NUMEROS DE USUARIOS SEGÚN TIPO .. 53

CUADRO 7. CLASIFICACION DE RIESGOS Y AMENAZAS .. 65

CUADRO 8 INFORMACION GENERAL DE LA EMPRESA PRESTADORA .. 71

CUADRO 9. AFORO CAUDAL .. 71

CUADRO 10. REPORTE DE RESULTADOS EXTERNOS 2013 .. 88

CUADRO 11 USUARIOS ACUEDUCTO COMUNITARIO SANTIAGO LONDOÑO .. 87

CUADRO 12. DOTACION NETA RAS 200 TITULO B.2 .. 89
ÍNDICE DE GRAFICOS

GRAFICA 1. COMPARATIVO DE LOS RESULTADOS DE LA MUESTRA DE TURBIEDAD DE LOS MESE MAYO- AGOSTO 2013 94

GRAFICA 2. COMPARATIVO DE LOS RESULTADOS DE LA MUESTRA DE COLOR DE LOS MESE MAYO- AGOSTO 2013 95

GRAFICA 3. COMPARATIVO DE LOS RESULTADOS DE LA MUESTRA DE CLORO DE LOS MESE MAYO- AGOSTO 2013 96

GRAFICA 4. COMPARATIVO DE LOS RESULTADOS DE LA MUESTRA DE COLIFORMES FECALES DE LOS MESE MAYO- AGOSTO 2013 .. 97

GRAFICA 5. COMPARATIVO DE LOS RESULTADOS DE LA MUESTRA DE COLIFORMES TOTALES DE LOS MESE MAYO- AGOSTO 2013 .. 98
Dedicatoria:

A Dios

Por darme la vida y permitirme llegar hasta este punto.

A mi madre

Por darme siempre tu amor incondicional, Por haberme apoyado en todo momento, por sus consejos, sus valores, por la motivación constante que me ha permitido ser una persona de bien, por todas esas noches de desvelo, por tus cuidados y tú esfuerzo para buscar mi bienestar.

A mi padre

Que aunque ya no está en el mundo terrenal me enseñó desde pequeña a luchar para alcanzar mis metas.

A mis hermanos

Por el esfuerzo realizado por ellos. El apoyo en mis estudios, de ser así no hubiese sido posible.

Diana Carolina Ortiz Villa
Dedicatoria

Hoy me encuentro cerca de la cima de mis estudios, a pocos escalones de este difícil peldaño, quiero dedicarles este triunfo a las personas que me apoyaron en los momentos difíciles; con los que realmente pude contar cuando necesite un amigo en el camino, con quienes me dieron la mano para poderme levantar cuando creí desfallecer, a quienes me sostuvieron con fuerza para no caer, gracias a ellos, en especial a mi madre que tantas veces me animo que supo de mis tristezas y mis llantos de noches de desvelos para para poder responder por mis compromisos, para ese padre incondicional que sin su apoyo y sus consejos no estaría hoy dando estos frutos y estas ganancias de mi vida, gracias a ellos por ser tan pacientes conmigo por ese amor, por esos detalles, gracias Dios mío por ese regalo, por ese tesoro lleno de inquietudes de riquezas y sorpresas por quien me hizo trazar nuevas metas, nuevas ilusiones, por ese ser que tanto amo Samantha mi preciosa hija adorada mi razón de ser los amo, padre madre e hija este triunfo es por y para ustedes.

Stephany Bolívar Mazuera
Agradecimientos:

A Dios por habernos dado salud, fortaleza, sabiduría, paciencia, para lograr nuestras metas.

A nuestros padres por el apoyo incondicional que nos brindaron siendo para nosotras la mejor de las herencias.

A nuestras familias por todo el apoyo que me nos brindaron en el transcurso de nuestras vidas, por toda la ayuda recibida,

A Daniel Lerma director de este proyecto, por su conocimiento, profesionalismo, por impulsar el deseo de lucha y perseverancia en alcanzar las metas trazadas en la vida, por estar en el momento oportuno, infinitas gracias.

A todo el personal del acueducto Comunitario Santiago Londoño por todo el apoyo que me brindaron, especialmente a Jhon Gonzales por su tiempo y dedicación.

A mis compañeros de la universidad por esa voz de aliento cuando estuvimos a punto de tirar la toalla, cuando no creíamos poder continuar, porque de manera incondicional siempre han estado a nuestro lado ofreciéndonos su apoyo, amor, confianza y aliento para seguir adelante, siempre estarán en nuestros corazones.

Que Dios les dé larga vida y los colme de bendiciones mil y mil GRACIAS.
1 INTRODUCCION

El Diagnóstico se realizó en el acueducto comunitario Santiago Londoño en el municipio de Dosquebradas Risaralda con el objetivo de hacer un análisis ambiental técnico de los componentes del sistema de abastecimiento con efectos en la calidad de agua.

En el acueducto comunitario Santiago Londoño del sector Frayles en Dosquebradas no existe un diagnóstico técnico de estudios de infraestructura y calidad de agua; situación que dificulta la formulación de planes de acción y mejoramiento, para la generación de nuevos recursos administrativos en las juntas de acción comunal.

Los problemas de calidad del agua están relacionados principalmente con la baja capacidad técnica de los sistemas de tratamiento algunos no cuentan con la infraestructura necesaria para potabilización del agua captada y que por tanto suministran agua contaminada, como lo es el caso del acueducto comunitario Santiago Londoño.

El agua contaminada puede producir efectos muy negativos, ya que provoca enfermedades humanas y hasta la muerte. Según la Organización Mundial de la Salud (OMS), nada menos que 4 millones de niños mueren al año como consecuencia de enfermedades diarreicas debidas a infecciones trasmitidas por el agua. Las bacterias más frecuentes en las aguas contaminadas son coliformes que se encuentran en las heces humanas. La escorrentía superficial que contribuye de forma significativa al alto nivel de agentes patógenos en las masas de agua superficiales.
Con relación al agua y el ambiente sano resulta fundamental contar con un diagnóstico preciso y exhaustivo que permita planificar colectivamente actividades y mejorar la situación actual.

El diagnóstico es el punto de partida de un Plan de Desarrollo. Es la carta de navegación que señala la situación actual del acueducto y las condiciones que opera. De esta manera se asegura que el Diagnóstico tome como punto de referencia la situación real del acueducto, sus carencias y necesidades, para así dar soluciones efectivas a situaciones ya conocidas y ordenadas según las prioridades.
2 PLANTEAMIENTO DEL PROBLEMA.

La calidad de vida de los ciudadanos de Dosquebradas, está determinada en gran medida por la capacidad de aprovechar los recursos hídricos naturales como el agua; pero estos a su vez son manejados por entidades privadas denominadas acueductos comunitarios. Con el fin de obtener los mejores resultados tanto en la distribución como en el aprovechamiento del recurso en mención; de esta manera se establecen criterios de estudio técnico relacionados con la prestación del servicio.

Se estima que una población aproximada a 62.350 habitantes se abastecen del vital líquido de acueductos diferentes a Serviciudad y Servicios Públicos Domiciliarios (Secretaría Municipal de salud de Dosquebradas, 2013); teniendo en cuenta que el 95% de estos acueductos no cumplen con los estándares de calidad exigidos por la normatividad técnica que rige para la calidad del agua (Norma técnica Colombiana 813), presentando irregularidades y grandes diferencias en los parámetros evaluados Respecto a la norma (Secretaría Municipal de Salud de Dosquebradas; 2013.); como lo son la turbiedad, el color, el pH, cloro, coliformes fecales y coliformes totales, arrojando como resultado la calificación del índice de Agua “no apta para el consumo humano”. Este análisis de resultados implica una reformulación de acciones de calidad en agua.

La dificultad que se ha presentado desde años anteriores en Dosquebradas, está tipificada con enfermedades de origen hídrico, en el año 2012 se reportaron 1771 casos de enfermos por causa de este recurso, reportándose enfermedades como: Diarrea y Gastroenteritis con el 82 %, seguido de Infecciones intestinales con un
10% y el 8% por otras enfermedades de origen hídrico (Secretaria Municipal de Salud de Dosquebradas, 2013).

A pesar de contar con análisis de la Asesoría de Control Interno del municipio industrial, se establecieron resultados inviables sanitariamente en la mayoría de acueductos, relacionados directamente con la presentación de fallas en el sistema de control de calidad del agua.

La Asociación de Usuarios del Acueducto Comunitario de Santiago Londoño, tiene una población usuaria de 2715 habitantes; la mayoría de estos se han visto afectados por la exposición a enfermedades producto de la contaminación hídrica en donde en el 2012 se reportaron 64 personas enfermas, 39 como diarrea y gastroenteritis de presunto origen infeccioso, 16 por infecciones intestinales virales y 9 personas por otras enfermedades comunes producto de la transmisión hídrica (Secretaria Municipal de Salud de Dosquebradas, 2013).

Los problemas que se desencadenan de esta falencia hídrica en los acueductos comunitarios como es el caso de Santiago Londoño; son el resultado del mal manejo de este recurso, y de un mal aprovechamiento de los mismos, donde se sugiere que se Cree Una empresa responsable que administre y se haga cargo del manejo y distribución del agua. Evitando consecuencias funestas para los habitantes de los sectores más humildes del segundo municipio en importancia de Risaralda.

De la misma manera, la legislación estatal referente a la administración de los acueductos comunitarios, se hace necesario realizar ajustes para ajustarlos a los modelos sociales y culturales propios de cada comunidad; en nuestro caso particular del municipio de Dosquebradas, barrio Santiago Londoño, incorporando para este proceso periodos de proyección y análisis acordes a las necesidades
presentes de las comunidades más vulnerables del municipio, con metas específicas de cobertura y calidad de acueducto para un periodo de tiempo previamente establecido.
3 JUSTIFICACIÓN.

Es necesario realizar un diagnóstico técnico que permita conocer en qué condiciones se encuentra el acueducto Santiago Londoño, su infraestructura, su capacidad de servicio, la calidad del agua que distribuye pues esta tiene una afectación directa en la salud pública de la comunidad.

El diagnóstico es una herramienta que ayuda para la toma de decisiones con los entes de control para que ellos hagan uso de esta información para generar estrategias que permitan mejorar a corto, mediano y largo plazo y así como también implementar planes maestros y mejoramientos para la comunidad.

De ahí nace la idea de ayudar a las comunidades a través de estudios y estrategias; presentando un panorama de lo existente y proponiendo actividades para su buen funcionamiento, con el fin inmediato de mejorar la calidad de vida de los usuarios.
4 OBJETIVOS

4.1 Objetivo General:

Diagnóstico técnico de la infraestructura de captación, tratamiento y distribución del sistema del acueducto Santiago Londoño en el municipio de Dosquebradas, Risaralda-Colombia.

4.2 Objetivos Específicos:

- Determinar las características generales de la cuenca hidrográfica en función de la calidad de agua en la fuente abastecedora.

- Establecer las características de infraestructura y funcionamiento de los sistemas de captación, conducción y tratamiento del acueducto.

- Levantar el esquema general de redes de distribución del acueducto.
5 MARCO REFERENCIAL.

5.1 Marco Conceptual

A continuación se referencian las definiciones de las variables contempladas en el problema y en los objetivos y los términos claves más utilizados

5.1.1 Sistema de acueducto

Entendemos por acueducto a aquellas construcciones que tienen por objetivo principal la conducción del agua desde un punto hasta otro para permitir que personas o comunidades tengan acceso a ella.

Los acueductos pueden tener diversas formas y formatos dependiendo de cada situación: la distancia a recorrer y, el tipo de terreno, entre otros; un sistema de acueducto, necesita gran cantidad y variedad de obras o construcciones para su buen funcionamiento(Romero, 2005).

El sistema de acueducto está formado por elementos físicos como los tanques y las tuberías, que conforman el aspecto técnico y por personas como el fontanero y el administrador que conforman el aspecto empresarial.

El aspecto técnico está integrado por componentes que captan, transportan, tratan, almacenan y distribuyen el agua, El aspecto empresarial, es la parte humana, son personas que administran, mantienen, reparan y controlan el buen funcionamiento de los componentes del aspecto físico del acueducto.
Componentes del sistema de acueducto:

- Microcuenca
- Captación
- Aducción
- Desarenador
- Planta de tratamiento
- Tanque de almacenamiento
- Sistemas de distribución y conexiones domiciliarias

5.1.1.1 Microcuenca:

Es el área geográfica mínima en la cual el agua se desplaza a través de drenajes con una salida principal llamada nacimiento o desagüe. Cuando este desagüe o río desemboca en otros cuerpos de agua mayores, como un lago, otro río, una ciénaga, o desemboca en el mar, hablamos de una cuenca. La cantidad de agua de una microcuenca depende de la presencia o no de vegetación y la conservación de los suelos. Sin ella es imposible tener agua en nuestras casas.

La microcuenca es el ámbito lógico para planificar el uso y manejo de los recursos naturales, buscando la sustentabilidad de los sistemas de producción, contribuyendo así a la seguridad alimentaria y nutricional. Es en este espacio donde ocurren las interacciones más fuertes entre el uso y manejo de los recursos naturales y el comportamiento de estos mismos recursos (reacción del ambiente). Ningún otro ámbito de acción que pudiera ser considerado (municipio, finca, acueductos, o sector, Entre otros) guarda esta relación de forma tan estrecha y tangible. (ECOAGUA, 2012)
5.1.1.2 Captación:

Está conformada por obras o estructuras que permiten tomar el agua de la fuente en forma controlada, los cuales están constituidos por una presa de embalse con sus vertederos (azud), amortiguadores de energía y sistema de drenaje o simplemente toman el agua directamente del río o quebrada.

5.1.1.3 Laaducción:

Son el componente a través del cual se transporta el agua cruda superficial o subterránea desde su punto de captación hasta el desarenador, ya sea mediante presión o a flujo libre. Es una obra lineal que puede contener instalaciones de pretratamiento y equipos de bombeo, el medio de transporte se hace a través de canales a flujo libre, o tuberías, o túneles a presión o a flujo libre, o una combinación de éstos.

5.1.1.4 Desarenador:

Son obras hidráulicas que sirven para separar (decantar) y remover (evacuar) después, el material sólido que lleva el agua de un canal. El material sólido que se transporta ocasiona perjuicios de las obras.

Una gran parte del material sólido va depositándose en el fondo de los canales disminuyendo su sección. Esto aumenta el costo anual de mantenimiento y produce molestas interrupciones en el servicio del canal.

Existen diferentes clases de desarenadores dependiendo su función, tenemos:

En función de operación, En función de la velocidad de escurrimiento y por la disposición de los desarenadores.
Elementos de un desarenador:

Para cumplir su función, el desarenador se compone de los siguientes elementos:

- **Transición de entrada**: une el canal con el desarenador.
- **Cámara de sedimentación**: lugar en la cual las partículas sólidas caen al fondo, debido a la disminución de la velocidad producida por el aumento de la sección transversal.
- **Vertedero**: al final de la cámara se construye un vertedero sobre el cual pasa el agua limpia hacia el canal. Las capas superiores son las que primero se limpian, es por esto que la salida del agua desde el desarenador se hace por medio de un vertedero, que hasta donde sea posible debe trabajar con descarga libre.
- **Compuerta de lavado o fondo**: sirve para desalojar los materiales depositados en el fondo. Para facilitar el movimiento de las arenas hacia la compuerta, al fondo del desarenador se le da una gradiente fuerte del 2 al 6%. El incremento de la profundidad obtenido por efecto de esta gradiente no se incluye en el tirante de cálculo, sino que el volumen adicional obtenido se lo toma como depósito para las arenas sedimentadas entre dos lavados sucesivos.

5.1.1.5 Planta de tratamiento:

Es el componente que realiza la función de purificación y potabilización del agua.

Pueden comprender, dependiendo de las características del agua cruda que se va a tratar, de una o varias de las instalaciones orientadas a establecer los procesos de potabilización que a continuación se enuncian:
Desarenación, control de sabor y olor, microtamizado, remoción de grasas y aceites, aireación, coagulación – mezcla rápida, floculación, sedimentación, filtración rápida, filtración lenta, desinfección, almacenamiento para establecer el tiempo de contacto para la desinfección, estabilización – ablandamiento, desferrización y desmanganetización, floculación lastrada, flotación, y además debe disponer de instalaciones para laboratorio de análisis de agua, sala de dosificación, sala de instrumentación y control, almacenamiento de sustancias químicas y un área para disposición y manejo de los lodos removidos. (Romero, 2005)

Tipos de Plantas de tratamiento:

- **Estación de tratamiento de agua potable de tecnología convencional:** incluye los procesos de coagulación, floculación, decantación (o sedimentación) y filtración.
- **Estación de tratamiento de agua potable de filtración directa:** incluye los procesos de coagulación-decantación y filtración rápida, y se puede incluir el proceso de floculación.
- **Estación de tratamiento de agua potable de filtración en múltiples etapas (FIME):** incluye los procesos de filtración gruesa dinámica, filtración gruesa ascendente y filtración lenta en arena.

También puede utilizarse una combinación de tecnologías, y en cada una de las tecnologías nombradas es posible contar con otros procesos que pueden ser necesarios específicamente para remover determinada contaminación.

5.1.1.6 Tanques de almacenamiento:

Una vez el agua sea potable, esta se almacena en tanques, esto permite disponer de reservas de agua. Debido a que el consumo de la población no es constante...
sino que varía según la hora del día, el tanque regula las variaciones del consumo. La función básica del tanque es almacenar agua en las horas que se consume menos, de tal forma que en el momento en que la demanda es mayor el suministro se completa con el agua almacenada. El tanque permite disponer de almacenamiento en caso de reparaciones o para atender incendios y regula las presiones en la red de distribución. (DEAYADE, 2000)

5.1.1.7 Sistemas de distribución y conexiones domiciliarias:

Son el conjunto de tuberías, accesorios y estructuras que siguiendo un trazado lineal a lo largo de las vías urbanas o suburbanas de una localidad, conducen el agua desde los tanques de almacenamiento o plantas de tratamiento hasta los puntos de consumo, es decir, a los predios usuarios a los cuales la suministra a través de conexiones domiciliarias. Los tanques de almacenamiento y compensación hacen parte de la operación de la red de distribución de acueducto y mantienen la presión y continuidad del servicio de acuerdo a las necesidades de la demanda y las variaciones del consumo de agua a lo largo del día.

5.1.1.8 Acueducto Comunitario:

Los acueductos comunitarios son estructuras sociales tradicionales. Hacen parte de la historia de ocupación de las periferias urbanas y las zonas rurales, lugares donde la población resolvió por sí misma el suministro de agua potable creando acueductos que han subsistido por 20,30 y hasta 60 años.

Los acueductos comunitarios son estructuras sociales creadas por grupos de vecinos, donde generalmente los servicios públicos o privados no llegan. Por medio de estatutos de autogobierno, elección de líderes comunitarios de manera abierta, sencilla, democrática, y trabajo mancomunado, dirigen sus esfuerzos para establecer un sistema de captación, potabilización, distribución y pago por el agua.
Sus líderes normalmente no reciben pago por su trabajo, sino que lo hacen por vocación y compromiso social. En toda América Latina hay ejemplos de este heroísmo anónimo e invisible en todos los países de la región. Se estima que existen más de 77.000 organizaciones comunitarias en todo el continente, aunque pueden ser aún más.

Como es de esperar, muchas de ellas son fuertes, sostenibles, democráticas, y capaces de proveer agua a sus comunidades y a nuevas familias que se unen a las redes todos los días. Estas son las organizaciones óptimas, que tienen una serie de características muy deseables y replicables. Pero existen también muchas que tienen que mejorar para llegar a convertirse en óptimas Juntas de Agua, Cooperativas, Comités de Agua.

5.1.1.9 Tecnología de Filtración en Múltiples Etapas (FIME)

Para entender más a fondo este trabajo de investigación debemos de enfocarnos en nuevas y diferentes tecnologías en agua potable y saneamiento que permitan alcanzar los objetivos últimos de los sistemas como son los de mejorar la calidad de vida de las comunidades. (Cinara, IRC, 1999)

A continuación hacemos una descripción de las plantas de tratamiento tipo FIME usada en el acueducto comunitario Santiago Londoño y sus componentes para remover las impurezas del agua.

En este acueducto se presenta la tecnología de Filtración en Múltiples Etapas (FIME), que se considera como una combinación de dos tipos de pre tratamiento con filtración en grava y tratamiento con filtración lenta en arena (FLA). La integración de estas etapas de filtración permite el tratamiento de aguas con niveles de contaminación elevados.
La tecnología de Filtración en Múltiples Etapas (FIME) consiste en la combinación de procesos de filtración gruesa en grava y filtros lentos de arena. La FIME puede estar conformada por dos o tres procesos de filtración, dependiendo del grado de contaminación de las fuentes de agua. Integrada por tres procesos: Filtros Gruesos Dinámicos (FGDi), Filtros Gruesos Ascendentes en Capas (FGAC) y Filtros Lentos de Arena (FLA). Los dos primeros procesos constituyen la etapa de pre tratamiento, que permite reducir la concentración de sólidos suspendidos.

Figura 1. Ilustración de los conceptos de múltiples etapas. Dosquebradas, 2014

Fuente: filtración en múltiples etapas: Tecnología innovativa para el tratamiento de agua; serie de Documentos técnicos.

Tratamiento integrado:

Al aplicar el concepto de tratamiento en múltiples etapas es importante reconocer que cada uno de ellos puede diferir en los mecanismos y eficiencia de remoción de los diferentes contaminantes. Según el concepto de tratamiento integrado, las fortalezas y debilidades de cada etapa deben ser reconocidas, estimadas y balanceadas para remover los contaminantes efectivos y económicamente (Lloyd, 1991). En general, la experiencia ha establecido la conveniencia de separar primero el material más pesado o de mayor tamaño y gradualmente ir avanzando...
en la remoción del más pequeño, que incluye microorganismos, para finalizar en la desinfección.

La desinfección terminal

La desinfección es normalmente la última etapa o barrera en tratamiento de agua que contribuye a eliminar o reducir a límites aceptables, según la reglamentación vigente, los riesgos de transmisión de enfermedades de origen hídrico. Para que ella sea efectiva se requiere que las etapas previas remuevan tanto a contaminantes que puedan interferir con los mecanismos de desinfección, como a la gran mayoría de microorganismos patógenos, de tal manera que no sea superada, en ninguna circunstancia, la capacidad de remoción del desinfectante. Así, se puede esperar que el afluente de las etapas anteriores presente demandas bajas y poco variables de desinfectante, haciendo más económica, confiable y sencilla de operar esta sencilla etapa de tratamiento.

5.1.2 Conceptos básicos asociados con el tratamiento del agua

Parámetros de la calidad del agua:

Color:

Es la capacidad de absorber ciertas radiaciones del espectro visible. Algunos colores específicos dan una idea de la causa que los provoca, sobre todo en las aguas naturales. El agua pura es bastante incolora solo aparece como azulada en grandes espesores.

En general presenta colores inducidos por materiales orgánicos de los suelos vegetales:

- Color amarillento debido a los ácidos húmicos
• Color rojizo, suele significar la presencia de hierro
• Color negro indica la presencia de manganeso

El color, por sí mismo, no descalifica a un agua como potable pero la puede hacer rechazable por estética. Las medidas de color se hacen en laboratorios por comparación, y se suelen medir en ppm de pt. La eliminación suele hacerse por coagulación – floculación con posterior filtración o la absorción en carbón activo (PEREZ. J, 2006)

Turbiedad:

Es una expresión de la propiedad o efecto óptico causado por la dispersión e interferencia de los rayos luminosos que pasan a través de una muestra de agua, es decir, es la propiedad óptica de una suspensión que hace que la luz sea remitida y no transmitida a través de la suspensión. La turbiedad en un agua puede ser causada por una gran variedad de materiales en suspensión que varían de tamaño desde dispersiones coloidales hasta partículas gruesas, entre otros, arcillas, limo, materia orgánica e inorgánica finamente dividida, organismos planctónicos, microorganismos. Se elimina por procesos de coagulación, decantación y filtración (REID, 1999)

Alcalinidad:

La alcalinidad de un agua determina su capacidad para neutralizar ácidos esta capacidad debe definirse para ciertos rangos de pH. Así la alcalinidad TAC mide la capacidad de neutralización hasta pH = 4.5 y la alcalinidad TA hasta pH = 8.3. En la mayoría de las aguas naturales la alcalinidad está producida prácticamente por los iones carbonato y bicarbonato aunque, en ocasiones, otros ácidos débiles como el silícico, fosfórico, bórico y ácidos orgánicos pueden contribuir de forma notable al desarrollo de esta propiedad (GARCIA, 2001)
Parámetros bacteriológicos:

Es la bacteria Escherichia coli y el grupo de los coliformes en su conjunto. Son indicadores de contaminación para que el agua sea potable no debe existir las siguientes bacterias

- Escherichia coli
- Estreptococos fecales
- Clostridios (anaerobios y formadores de esporas).

La medición se hace empleando técnicas estadísticas "número más probable" (índice NMP) en 100 ml de agua.

Las aguas con un NMP inferior a 1 son satisfactoriamente potables.

Coliformes:

Son una familia de bacterias que se encuentran conjuntamente en las plantas, el suelo y los animales. Incluyendo a los humano. La presencia de bacterias coliformes en la muestra de agua de consumo es indicador de que el suministro de agua puede estar contaminado por aguas negras u otro tipo de desechos en descomposición (Lloyd, 1991).

Coliformes fecales:

Son un tipo de coliformes que se encuentran en los intestinos humanos y otros animales de sangre caliente. Su presencia en un suministro de agua es un buen indicador de que las aguas negras han contaminado el agua, para que el agua sea potable no debe existir. (OKUN, D. A., 1991)

Cloro:

Es un elemento químico gaseoso que por su carácter oxidante activo se utiliza para desinfectar las aguas de consumo. Su valor se mide en
unidades de concentración (miligramos/litro) y no se debe exceder de cierto límite para evitar sabores desagradables o afecciones a la salud. (Lloyd, 1991)

Cloro libre residual:

Es la porción de cloro que permanece activo después de un periodo de contacto con el agua y que sirve para asegurar la presencia de desinfectante durante el tiempo y el trayecto que debe recorrer el agua hasta su consumo. Su milite es 1mg/l. (PEREZ. J, 2006)

Mesofilos:

Son la flora total compuesta por bacterias, hongos filamentosos y levaduras, aerobios estrictos o facultativos que presentan unas características térmicas intermedias. Este grupo incluye a las bacterias que crecen en aerobiosis con temperatura de incubación entre 15 y 40ºC, pudiendo detectar su presencia dLa presencia de estos microorganismos se considera indicador del grado de contaminación de las aguas y como medio de transmisión de enfermedades después de una incubación a 35ºC +/- 2ºC por 48 horas. (ARBOLEDA, 1993)

En Estados Unidos, la normatividad vigente acepta la desinfección de aguas superficiales como única etapa de tratamiento solo cuando se cumplen una serie de ocho (8) condiciones (PONTUIS, 1990), las cuales se presentan de manera resumida a continuación.

• El nivel de contaminación fecal no debe superar 20UFC/100 ml en el 90% de las muestras.

• La turbiedad no debe ser superior a 5 UNT. Ocasionalmente se acepta valores superiores pero con frecuencia estadística inferior a dos veces por año.
• La desinfección debe operarse para inactivar el 99.9% y el 99.99% de quistes de Giardia y virus respectivamente. Esto se controla con base a valores mínimos reglamentados del producto C, cloro residual, por T, tiempo de contacto del cloro con el agua hasta el primer usuario, medido a la hora pico de consumo.

• Establecer y mantener un programa efectivo de control de la cuenca.

• Llevar a cabo inspecciones sanitarias anuales con participación de la autoridad sanitaria o su delegado.

• Haber eliminado los brotes de enfermedades de origen hídrico.

• Cumplir con la reglamentación relacionada con los indicadores de contaminación fecal.

• Cumplir con la reglamentación para nivel máximo de contaminación por trihalometatos.

Esta reglamentación corresponde a estudios epidemiológicos y de administración de riesgo propios de este país y establecen, en la medida de sus posibilidades, condiciones exigentes, para evitar la aplicación del concepto, del tratamiento en múltiples etapas y consecuentemente, el de tratamiento integrado, dejando la desinfección, terminal como la última barrera de seguridad.

5.1.3 Descripción de los componentes de filtración en múltiples etapas:

FIME, puede estar conformada por dos o tres componentes o etapas principales de filtración dependiendo de los niveles de contaminación en la fuente. La opción de tres componentes, Filtros gruesos dinámicos (FGDi), filtro grueso (FG) y filtro lento en arena (FLA) (figura 2). Filtro grueso puede obviarse con fuentes de buena calidad. FGD1 se orienta principalmente a la reducción del sólido suspendido, con
base a la remoción de las partículas más grandes; a medida que el agua avanza a las siguientes etapas, gradualmente se prioriza la remoción de partículas más pequeñas y microorganismos.

Figura 2. Esquema Sistema de tratamiento por filtración en múltiples etapas, Dosquebradas, 2014

Fuente: Libro filtración en múltiples etapas: Tecnología Innovativa para el tratamiento de agua; Documentos técnicos.

5.1.3.1 Filtro grueso dinámico (FGDi)

Incluye una capa delgada de grava fina en la parte superior y otra más gruesa en contacto con el sistema de drenaje en el fondo. El agua que entra en la unidad pasa sobre la grava y parte de ella es captada atreves del lecho, hacia la próxima etapa de tratamiento. Con niveles moderados o estables de sólidos en la fuente, las unidades de filtro grueso dinámico se obstruirá gradualmente, y ante cambios bruscos, la colmatación será más rápido y una fracción significativa o, eventualmente, el total del flujo captado, fluirá sobre el lecho colmatado y retornara a la fuente, protegiendo de esta manera las etapas de tratamiento de relativamente más difíciles de operar y mantener.
De acuerdo con el sentido del flujo en los lechos de grava de la segunda etapa de tratamiento los filtros gruesos pueden ser tipo ascendente (FGA), descendiente (FGD) (figura 3).

Figura 3: Esquema isométrico de un filtro grueso dinámico, Dosquebradas 2014

Los filtros gruesos de flujo Ascendente (FGA):

Consiste en un compartimento principal donde se ubica un lecho filtrante de grava el cual disminuye de tamaño con la dirección del flujo. Un sistema de drenaje, ubicado en el fondo de la estructura, sirve para distribuir el flujo durante la carrera de filtración o para drenar los lechos de grava durante las actividades de limpieza hidráulica, con base a las descargas frecuentes de fondo. Según la longitud y la distribución de las capas de grava se pueden distinguir dos alternativas: La Filtración Gruesa en Ascendentes en capas (FGAC) (figura 4), cuando los lechos de grava son instalados en una misma unidad o estructura y La Filtración Gruesa Ascendente en serie (FGAS), cuando los lechos de grava son instalados en dos o tres unidades de filtración, cada una conteniendo un tamaño predominante de grava, que decrece en el sentido del flujo.
Figura 4: corte isométrico de un filtro grueso ascendente en capas. Dosquebradas, 2014

La filtración gruesa ascendente tiene la ventaja de favorecer la acumulación de sólidos en el fondo de las unidades. Adicionalmente, la dirección vertical del flujo reduce interferencias generadas por temperatura o diferencias de densidad del flujo, mejorando el comportamiento hidráulico de la unidad, evitando zonas muertas y produciendo tiempos de retención más homogéneos. Estos factores influyen significativamente en la eficiencia del proceso de tratamiento (Galvis et al, 1996)

Básicamente un filtro grueso ascendente está compuesto de:

- Cámaras de filtración con 1,2 o 3 compartimientos
- Lecho filtrante
- Estructuras de entrada y salida
- Sistema de drenaje y cámara de lavado
- Accesorios de regulación y control
- Dispositivos para la limpieza superficial

Fuente: Libro Filtración en múltiples etapas tecnología innovativa para el tratamiento de agua
Los Filtros Gruesos de Flujo Descendente en Serie (FGDS):

Costa de tres compartimientos, con grava que van de gruesas a finas en el sentido del flujo (figura 5). El comportamiento de los FGDS es semejante a los de FGAS, en términos eficiencias de remoción; sin embargo, el mantenimiento se hace más difícil, pues el lodo tiende acumularse en la superficie de la primera unidad de la serie de tres y su limpieza es relativamente más difícil que las unidades de FGAS, donde el lodo se acumula preferencialmente en la camada inferior de grava, cerca de los drenes.

Figura 5: Esquema isométrico de un filtro Descendente en serie. Dosquebradas, 2014

Fuente: Libro Filtración en múltiples etapas tecnología innovativa para el tratamiento de agua

Filtración Lenta en Arena:

Una unidad de filtración lenta en arena consta básicamente de los siguientes componentes ilustrados en la figura 6:

- Caja de filtros y su estructura de entrada
- Lecho filtrante
• Capa de agua sobre nadante
• Sistema de drenaje, que incluye lecho de soporte y cámara de salida
• Conjunto de dispositivos para la regulación, control y rebosadre del flujo

Figura 6. componentes básicos de un filtro lento en arena con control de entrada.
Dosquebradas, 2014

 Una descripción específica de estos componentes se desarrolla a continuación

a) Dispositivo para controlar entrada de agua pretratada y regular velocidad de filtración
b) Dispositivo para drenar capa de agua sobrenadante
c) Conexión para llenar lecho filtrante con agua limpia producida por otras unidades de FLA
d) Válvula para drenar lecho filtrante
e) Válvula para desechar agua cruda
f) Válvula para suministrar agua tratada al tanque de contacto y posteriormente al depósito de agua limpia

Fuente: Libro Filtración en múltiples etapas tecnología innovativa para el tratamiento de agua
g) Vertedero de entrada a
h) Indicador calibrado de flujo
i) Vertedero de salida
j) Válvula para control de flujo a la salida (solamente en FLA con control a la salida)
k) Cámara de entrada a FLA
l) Ventana de acceso a FLA

5.1.4 Conceptos básicos asociados con el tratamiento del agua

Desinfección:

Es el proceso de aplicar el cloro para la eliminación de agentes microorganismos que se encuentran en el agua.

Parámetros de la calidad del agua:

Color:

Es la capacidad de absorber ciertas radiaciones del espectro visible. Algunos colores específicos dan una idea de la causa que los provoca, sobre todo en las aguas naturales. El agua pura es bastante incolora solo aparece como azulada en grandes espesores.

En general presenta colores inducidos por materiales orgánicos de los suelos vegetales:

- Color amarillento debido a los ácidos húmicos
- Color rojizo, suele significar la presencia de hierro
- Color negro indica la presencia de manganeso

El color, por sí mismo, no descalifica a un agua como potable pero la puede hacer rechazable por estética. Las medidas de color se hacen en laboratorios por
comparación, y se suelen medir en ppm de pt. La eliminación suele hacerse por coagulación – floculación con posterior filtración o la absorción en carbón activo (PEREZ. J, 2006)

Turbiedad:

Es una expresión de la propiedad o efecto óptico causado por la dispersión e interferencia de los rayos luminosos que pasan a través de una muestra de agua, es decir, es la propiedad óptica de una suspensión que hace que la luz sea remitida y no transmitida a través de la suspensión. La turbiedad en un agua puede ser causada por una gran variedad de materiales en suspensión que varían de tamaño desde dispersiones coloidales hasta partículas gruesas, entre otros, arcillas, liimo, materia orgánica e inorgánica finamente dividida, organismos planctónicos, microorganismos. Se elimina por procesos de coagulación, decantación y filtración (REID, 1999)

Alcalinidad:

La alcalinidad de un agua determina su capacidad para neutralizar ácidos esta capacidad debe definirse para ciertos rangos de pH. Así la alcalinidad TAC mide la capacidad de neutralización hasta pH = 4.5 y la alcalinidad TA hasta pH = 8.3. En la mayoría de las aguas naturales la alcalinidad está producida prácticamente por los iones carbonato y bicarbonato aunque, en ocasiones, otros ácidos débiles como el silícico, fosfórico, bórico y ácidos orgánicos pueden contribuir de forma notable al desarrollo de esta propiedad (GARCIA, 2001)

Parámetros bacteriológicos

Es la bacteria Escherichia coli y el grupo de los coliformes en su conjunto. Son indicadores de contaminación para que el agua sea potable no debe existir las siguientes bacterias
- Escherichia coli
- Estreptococos fecales
- Clostridios (anaerobios y formadores de esporas).

La medición se hace empleando técnicas estadísticas "número más probable" (índice NMP) en 100 ml de agua.

Las aguas con un NMP inferior a 1 son satisfactoriamente potables.

Coliformes:

Son una familia de bacterias que se encuentran conjuntamente en las plantas, el suelo y los animales. Incluyendo a los humano. La presencia de bacterias coliformes en la muestra de agua de consumo es indicador de que el suministro de agua puede estar contaminado por aguas negras u otro tipo de desechos en descomposición (Lloyd, 1991).

Coliformes fecales:

Son un tipo de coliformes que se encuentran en los intestinos humanos y otros animales de sangre caliente. Su presencia en un suministro de agua es un buen indicador de que las aguas negras han contaminado el agua, para que el aguasea potable no debe existir. (OKUN, D. A., 1991)

Cloro:

Es un elemento químico gaseoso que por su carácter que por su carácter oxidante activo se utiliza para desinfectar las aguas de consumo. Su valor se mide en unidades de concentración (miligramos/litro) y no se debe exceder de cierto límite para evitar sabores desagradables o afecciones a la salud.(Lloyd, 1991)
Cloro libre residual:

Es la porción de cloro que permanece activo después de un periodo de contacto con el agua y que sirve para asegurar la presencia de desinfectante durante el tiempo y el trayecto que debe recorrer el agua hasta su consumo. Su milite es 1mg/l. (PEREZ. J, 2006)

Mesofíllos:

Son la flora total compuesta por bacterias, hongos filamentosos y levaduras, aerobios estrictos o facultativos que presentan unas características térmicas intermedias. Este grupo incluye a las bacterias que crecen en aerobiosis con temperatura de incubación entre 15 y 40ºC, pudiendo detectar su presencia después de una incubación a 35ºC +/- 2ºC por 48 horas. (ARBOLEDA, 1993)

Descripción de los componentes que conforman el sistema de abastecimiento:

Tanque de almacenamiento:

Depósito destinado a mantener agua para su uso posterior. Su función es compensar las variaciones horarias de la demanda de agua potable y almacenar un volumen estratégico para situaciones de emergencia, como por ejemplo incendios.

Conducción:

Distribución del agua desde el sistema de tratamiento hasta los puntos de consumo.
Micromedicion:

Tiene objeto cuantificar periódicamente el consumo de agua de los usuarios confines de facturación, asegurar que los consumos sean racionales y tener un equilibrio adecuado entre la población y demanda de agua.

Cálculos de los componentes del sistema de acueducto población, dotación y demanda (RAS: Resolución Nº 2320, 2009).

5.1.5 Catastro de redes:

El catastro registra todos los componentes existentes que cuenta la EPS (Líneas principales, infraestructura, equipos, redes de distribución, entre otros.) con metodologías y procedimiento adecuados y debidamente implantados. (ERSAPS, 3007)

5.1.5.1 Catastro técnico de redes de Acueducto:

Un catastro de redes es un sistema de registro y archivo de Planos y de Fichas técnicas que contiene información estandarizada, relacionada con todos los detalles técnicos de ubicación y especificaciones técnicas de los elementos de la red instalados.

Importancia del catastro de red:

- Permite determinar la ubicación exacta y referenciada de cada uno de los elementos de los sistemas que abastecen y evacúan el agua en una ciudad.
- Hace posible contar con una radiografía integral y actualizada de su estado.
- Brinda las pautas para cualquier actividad de operación.
• Posibilita el proceso de diagnóstico de las pérdidas físicas en la distribución de Agua Potable, debido a fugas en las juntas, o roturas en el cuerpo de las tuberías, o por el mal estado de las válvulas

El catastro es importante para:

• conocer todo lo referente a los detalles técnicos y operacionales de la totalidad de los elementos que intervienen en cada uno de los sistemas mencionados
• efectuar maniobras de operación y regulación del sistema con seguridad y exactitud basándolas en el conocimiento preciso del lugar de ubicación y de las condiciones técnicas de operación de sus principales accesorios.
• ejercer un mejor control sobre la operación de los respectivos sistemas apoyar la tarea de detección y localización de fugas y aportar información para su reparación oportuna.
• mantener actualizada y disponible la información sobre ampliaciones y sustituciones de componentes de las redes.

El catastro de redes está compuesto por:

• Plano General base
• Planos Zonales que se derivan del Plano General
• Planos de esquíneros (cruces)

Plano General:

Para un sistema que refleje la ubicación de las redes de distribución de agua potable, es esencial que se inicie de un plano que refleje la geografía urbana de forma actualizada. Esta base cartográfica puede ser obtenida a partir de:

• Recolección de planos, fotografías aéreas, satelitales y otros, que pueden estar en dependencias de la Municipalidad, o entidades especializadas en información cartográfica como los institutos geográficos nacionales.
Plano zonal:

Debe representar las instalaciones, si se dispone de topografía, las curvas de nivel. Para ello, una vez numeradas y codificadas todas las zonas en el plano general, se procede a elaborar los planos zonales de la red, empleando el siguiente procedimiento:

Recopilar la información existente de memorias técnicas o de planos.

Numerar cada manzano, cruce y esquina de calles que estén dentro del Plano Zonal, de izquierda a derecha y de arriba hacia abajo. Se recomienda el de dígitos secuenciales independientes, en el cual el primer dígito corresponde a la fila y el segundo a la columna de manzanos.

Planos Esquineros o de Cruce:

Los planos esquineros o planos de cruces tienen por objetivo mostrar en detalle la ubicación de los accesorios de las redes de agua potable.

Estimación de la población:

Se recolecta los datos demográficos, los censos de población del DANE y el censo disponible de suscriptores del acueducto. Con base en los datos anteriores se obtienen los parámetros que determinan el crecimiento de la población.

5.1.6 Dotación neta

La dotación neta corresponde a la cantidad mínima de agua requerida para satisfacer las necesidades básicas de un habitante sin considerar las pérdidas que ocurran en el sistema de acueducto.
5.1.7 Dotación bruta

La dotación bruta debe establecerse según la siguiente ecuación:

\[d_{bruta} = \frac{d_{neta}}{1 - %p} \]

5.1.8 Demanda:

Caudal medio diario

El caudal medio diario, Qmd, es el caudal medio calculado para la población proyectada, teniendo en cuenta la dotación bruta asignada. Corresponde al promedio de los consumos diarios en un período de un año y puede calcularse mediante la siguiente ecuación:

\[Q_{md} = \frac{p \cdot d_{bruta}}{86400} \]

Caudal máximo diario

El caudal máximo diario, QMD, corresponde al consumo máximo registrado durante 24 horas durante un período de un año. Se calcula multiplicando el caudal medio diario por el coeficiente de consumo máximo diario, k1. El caudal máximo diario se calcula mediante la siguiente ecuación:

\[QMD = Q_{md} \cdot k_1 \]
Caudal máximo horario

El caudal máximo horario, QMH, corresponde al consumo máximo registrado durante una hora en un período de un año sin tener en cuenta el caudal de incendio. Se calcula como el caudal máximo diario multiplicado por el coeficiente de consumo máximo horario, k2.

\[
Q_{MH} = Q_{MD} \cdot k_2
\]

Caudal ecológico:

Es el caudal mínimo que debe mantenerse en un curso de agua al construir una presa, una captación o una derivación de forma que no se alteren las conducciones naturales y se garantice el desarrollo de la vida natural. (Confederacion hidrologica del tajo (CHT), 2011)
5.2 MARCO DE ANTECEDENTES

El abastecimiento de agua potable y saneamiento básico son aspectos esenciales para el mejoramiento de la salud pública y el desarrollo socio económico, particularmente en países con una parte importante de su población afectada por enfermedades relacionadas con el agua. Este tipo de enfermedades se encuentra entre las tres principales causas de morbilidad y mortalidad en el mundo (CREAUN, 1994) afectando principalmente a los grupos humanos que viven en asentamientos con deficiencias en su infraestructura sanitaria. Esta situación limita la posibilidad de una vida digna y reduce significativamente la productividad de la población.

Según el Censo de Población realizado por el DANE durante el 2005, la tasa de cobertura de acueducto en Colombia es 83.2% y poblaciones Rurales con cobertura de acueducto de 47.1% (UNICEF, 2012). Lo cual refleja un avance con respecto a años anteriores. No obstante, la situación es crítica, pues no todos los sistemas de abastecimiento de agua incluidos en los índices de cobertura brindan un buen servicio.

Una evaluación en Colombia mostró que solo el 4% de los asentamientos humanos con menos de 12000 habitantes cuenta con infraestructura para el mejoramiento de la calidad del agua (Departamento de Planeación Nacional, 1991) y no hay información confiable sobre las condiciones de operación y mantenimiento. Este tamaño de asentamientos incluye el 34% de la población Colombiana.

Tradicionalmente los planificadores, diseñadores y las comunidades han dado prioridad a indicadores de cobertura y cantidad de agua y no a otros como continuidad y calidad. Esto se ve reflejado en el saneamiento en algunas
regiones del país donde está estrechamente ligado a la morbilidad y mortalidad infantil.

Cada año mueren en Colombia aproximadamente 13,600 niños y niñas menores de 5 años. Más de la mitad de estas muertes ocurren por causas prevenibles y muchas de ellas como consecuencia de la mala calidad del agua.

Además de los niños que mueren por estas causas, muchos más sufren de diarrea crónica, desnutrición, así como enfermedades e infecciones que en muchos casos obstaculiza su asistencia y rendimiento escolar y compromete su desarrollo físico, emocional e intelectual.

Para los adultos, las deficiencias en materia de agua y saneamiento se traducen en enfermedades potencialmente mortales, en una disminución de la productividad y de los ingresos, y en una baja calidad de vida. De esta manera, se puede afirmar que el agua, el saneamiento y el ambiente sano son indispensables para la garantía de otros derechos como la salud, la nutrición, la educación y el desarrollo (UNICEF, 2012).

En la actualidad los gobiernos y las comunidades muestran una mayor preocupación por la calidad en la prestación de este servicio. Lo mismo por la conservación y protección de las fuentes de agua, entre otras razones.

Esta nueva actitud es necesaria por el deterioro significativo de cuencas hidrográfica y fuentes superficiales, la mayoría de ellas afectadas por contaminación doméstica o industrial. Esto es particularmente relevante para las comunidades de América Latina, donde se estima que el 50% de ellas dependen de fuentes superficiales para sus sistemas de abastecimiento y, en algunas zonas, como el valle geográfico del río Cauca en los Andes Colombianos, estas fuentes
se usan aproximadamente en el 70% de las cabeceras municipales y el 60% de los núcleos rurales.

El efecto de la erosión de las cuencas hidrográficas en las fuentes superficiales se refleja en concentraciones fluctuantes, con promedios muchas veces altos, de sólidos suspendidos. Las descargas sin tratamiento del 98% de las aguas residuales municipales se reflejan en los niveles de contaminación fisicoquímica y microbiológica de las fuentes receptoras (IRC, 1995).

Esta situación determina los riesgos sanitarios asociados con este tipo de fuentes y el agua que se suministra a las poblaciones se aleja cada vez más de los estándares de calidad establecidos por las autoridades sanitarias, nacionales o por las guías de (WHO, 1996). Frente a esta realidad, la adecuada selección, el mejoramiento y la protección de las fuentes de agua se vuelven factores muy importantes, pues de otra manera la complejidad, la vulnerabilidad y los costos de los sistemas de tratamiento de agua serán cada vez más elevados (OKUN, D. A., 1991). Sin embargo, aun la mejor fuente de abastecimiento con buena protección en su micro cuenca, puede requerir de algún tipo de tratamiento.

Para ayudar a que esta situación mejore es necesario hacer un diagnóstico de la calidad de agua suministrada a los usuarios de los acueductos comunitarios en el municipio de Dosquebradas Risaralda, haciendo un análisis, desde su cuenca abastecedora, hasta finalmente las redes de distribución, así determinar cualquier situación.

Esta investigación se realiza sobre la base de datos y hechos recogidos y ordenados sistemáticamente, que permiten juzgar mejor qué es lo que está pasando.
Se toma como referencia otros diagnósticos hechos a acueductos comunitarios en otras épocas y lugares del mundo como lo es el caso del documento “Diagnóstico de los sistemas de acueducto rurales en la cuenca del río la vieja” de la Universidad Tecnológica de Pereira y el “Diagnóstico acueductos comunitarios en Bolivia”, en los cuales involucra a un grupo de personas de una institución interesadas en plantear soluciones a situaciones problemáticas y conflictivas en los acueductos, haciendo un análisis que concluye en un plan de acción concreto que permite solucionar la situación problema.

5.2.1 Antecedentes Cuenca Del Rio Otún

- Uso actual del suelo:

La cobertura y usos actuales del suelo en la cuenca, se pudo determinar que el bosque natural representa el 29,08% del área total, seguido por la vegetación de páramo con 21,46%, pasto manejado con 15, 94%, café con 9,1% y bosque secundario con 7,19%. Los usos de menor representatividad son bosque plantado, asociación de café y plátano, pasto natural, guadua y urbano. Las principales actividades productivas son: agrícola, pecuaria, forestal y minera, sin desconocer el auge que viene adquiriendo el turismo.

-Suelos de Protección: La parte media –alta tiene una dinámica de conservación para la protección del recurso hídrico y la biodiversidad, cuenta con áreas del orden nacional, regional y municipal, que han sido declaradas y consolidadas en un sistema de áreas protegidas y reconocidas por los planes de ordenamiento territorial, las cuales desde el punto de vista de la vulnerabilidad a incendios forestales, corresponden a las zonas de mayor interés.

-Riesgos y Amenazas: El territorio de las cuencas se encuentra dentro de la zona de alta amenaza sísmica. La amenaza volcánica está relacionada con la
proximidad de los volcanes Nevado de Santa Isabel, Paramillo de Santa Rosa y Quindío, que representan un riesgo bajo.

La cuenca tiene un alto potencial para la ocurrencia de inundaciones, cuyas causas más frecuentes son las lluvias de larga duración y alta intensidad que pueden resultar en crecientes torrenciales con carácter de avalancha. Las zonas expuestas a esta amenaza fueron identificadas en el proyecto Construcción de un Ordenamiento Territorial para el Desarrollo Sostenible en la Eco región del Eje Cafetero 2002.

Situación actual de la cuenca baja quebrada San José

La Quebrada san José se abástese de la cuenca del río Otún, el cual inicia en el caño Alsacia, afluente de la laguna del río Otún, a una altura de 3980 msnm y desemboca en el río cauca a los 875 msnm en flanco occidental de la cordillera central en su trayectoria discurre por territorios de los municipios de Pereira, Santa Rosa de Cabal, Dosquebradas y Marsella como se muestra en la siguiente figura:

Figura 7: División de las subcuentas del río Otún. Dosquebradas, 2014.

![Figura 7: División de las subcuentas del río Otún. Dosquebradas, 2014.](image)

Fuente: SIG CARDER
La cuenca del río Otún abastece la sub cuenca de la quebrada San José, la cual abastece el acueducto comunitario Santiago Londoño

En esta fase se hace una descripción general a través de tablas y mapas, el estado de cada uno de los recursos agua, suelo, biodiversidad y el componente socioeconómico de la dicha Quebrada.

Quebrada San José (cuenca Baja)

Esta quebrada se encuentra en el sector sur-oriental del municipio, los afluentes que la forman se localizan en el Alto del Oso y en el Alto del Toro a 2.030 y 1.975 m.s.n.m., respectivamente. Inicia su recorrido en dirección norte-sur para luego girar hacia el occidente y entregar sus aguas al Río Otún. Limita por el norte con la microcuenca de la Quebrada La frailes y por el sur con la cuenca del Río Otún (tramo Bajo) como se muestra en la siguiente figura:

Figura 8: Microcuencas del Municipio de Dosquebradas 2010

Fuente: SIG CARDER
En el siguiente cuadro se describe los parámetros generales de la microcuenca Quebrada San José.

Cuadro 1. Parámetros Generales de la microcuenca de la Quebrada San José Dosquebradas Risaralda-Colombia

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área (Km²)</td>
<td>9.53</td>
</tr>
<tr>
<td>Ancho Promedio (Km.)</td>
<td>1.94</td>
</tr>
<tr>
<td>Longitud Axial (Km.)</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Fuente: CARDER

La cuenca de la Quebrada San José, según el parámetro Coeficiente de Compacidad igual a 2.0, se encuentra en el rango de oval oblonga o rectangular oblonga, que indica que la probabilidad de que se presenten crecientes repentininas o avenidas torrenciales es baja, ya que la concentración del agua que llega a la cuenca va a tener tiempos largos de concentración, es decir que el agua que llega a la corriente principal, producto de las lluvias, lo va hacer en diferentes intervalos de tiempo.

Los parámetros morfométricos evaluados en esta microcuenca indican que tiene una baja probabilidad de presentar crecientes súbitas o avenidas torrenciales, lo cual no significa que en ésta no se vayan a generar inundaciones.

Situaciones ambientales generales

Se identifica los problemas relevantes y se clasifican de acuerdo al componente afectado (cuadro 2).
Cuadro 2. Situaciones ambientales generales en diferentes componentes de la microcuenca

<table>
<thead>
<tr>
<th>COMPONENTES</th>
<th>SITUACIONES AMBIENTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>- Contaminación de fuentes hídricas</td>
</tr>
<tr>
<td></td>
<td>- Disminución de la disponibilidad del agua</td>
</tr>
<tr>
<td></td>
<td>- Baja cobertura de sistemas de tratamiento y/o inadecuado mantenimiento de las existentes.</td>
</tr>
<tr>
<td>Suelo</td>
<td>- Ausencia de zonas forestales protectoras.</td>
</tr>
<tr>
<td></td>
<td>- Falta un modelo productivo integral para la cuenca</td>
</tr>
<tr>
<td>Biodiversidad</td>
<td>No existe inventario de humedales en Dosquebradas y en la cuenca baja</td>
</tr>
<tr>
<td>Identidad político administrativo</td>
<td>Los proyectos carecen de visión de protección a la cuenca.</td>
</tr>
</tbody>
</table>

Fuente: Grupo de ordenación de cuencas- CARDER

De otro lado, es importante resaltar que a lo largo de la cuenca media transitan los fines de semana aproximadamente 3000 personas entre ciclistas, caminantes y quienes llegan en chivas o vehículos particulares atraídos por la belleza escénica de la zona. Esta población proviene de los municipios de Pereira y Dosquebradas principalmente; muchos de ellos buscan charcos para nadar y un sitio donde hacer su “Sancocho en Leña”. La mayor concentración de esta población “Flotante” es el sector de San José, en los Charcos de la Q. Cristalina, los cuales hacen honor a su nombre, generando gran atracción a los visitantes.
Amenazas y riesgos:

En la quebrada se pueden identificar eventos que amenazan a la población como las actividades sísmicas, volcánica e hidrológica como deslizamientos y/o represamientos producto de la combinación de un sismo moderado con lluvias fuertes, los cuales puedes además generar un flujo de lodo. (CARDER, 2000)

Las causas más frecuentes son las acrecientes de las crecientes son las lluvias de larga duración y de gran intensidad que pueden ocasionar deslizamientos y de rumbes y/o resultar directamente en crecientes torrenciales con carácter de avalancha donde grandes cantidades de escombros y sedimentos son trasportados.

Construcción de viviendas en las llanuras de inundación y cerca de los taludes que conforman las márgenes de las corrientes, tanto por procesos de invasión como por planes de vivienda oficial y privada calidad de las viviendas baja, especialmente en los sectores subnormales, tanto por las tecnologías deconstrucción como por el estado de deterioro susceptibilidad de los drenajes al taponamiento de canales con basuras.

En zonas de taludes inestables o de altas pendientes, o sobre sectores de coronas de antiguos movimientos de masa. Entre los asentamientos que se encuentran expuestos a este tipo de riesgo encontramos los Guamos, los Pinos, Camilo Torres y el Sector de la ladera Norte del Río Otún.

Desde la quebrada San José, hasta la desembocadura de la quebrada Dosquebradas atraviesa el corregimiento de La Florida, zona rural de Pereira. Allí los problemas provienen del mal manejado, basuras, alcantarillados incompletos, y las granjas de crianza de animales(CARDER, 2000).
Antecedentes acueducto comunitario Santiago Londoño

A través de la Resolución N° 2524 de 17 de noviembre de 2009, la entidad CARDER otorgó a la asociación de usuarios del acueducto comunitario de los barrios Santiago Londoño, Vela I, y Vela II, concesión de aguas superficiales de la Quebrada San José en cuantía de 9.2 l/s, con una vigencia de 5 años.

En el estudio de este proyecto se tiene en cuenta todos los estudios realizados y presentados por las personas encargadas de control y vigilancia del acueducto en la actualidad; en estos registros se evidencia el estado y operación en que se encuentra el acueducto para prestarle el servicio de suministro de agua a la comunidad habitante en el barrio Santiago Londoño.

Se encontraron en el expediente de la CARDER, estudios realizados al acueducto comunitario, en el cual consta del formato de Registro de chequeo de toda la estructura del acueducto con fecha de 14 de Enero 2011, el cual especifica los componentes que integran el sistema, su ubicación, estado, dimensionalidad e información general. Se observa que el documento no es oficial y no representa un Diagnóstico técnico completo.

Además de este registro existen antecedentes de tipo técnico, ambiental y seguimientos a la resolución N° 2524 de 2009 “concesión de agua” realizados por la CARDER.

En el caso del documento Técnico N° 709 “Regulación y control a la demanda Ambiental; realizado 17 de Marzo de 2010, Por el cual se hace seguimiento y chequeo al acueducto comunitario, datos generales, especificación del proyecto, desde la Gran cuenca hasta la microcuenca abastecedora, con coordenadas y descripción; se hace las respectivas conclusiones y recomendaciones también incluyen registro fotográfico y toma de caudales.
Dicho informe saca como conclusión que el caudal concesionado es de 9.2 L/s y el caudal captado es de 9.96 L/s, y recomienda invitar al representante legal del acueducto para que motive a la comunidad a realizar un ahorro y uso eficiente del agua.

El más reciente estudio realizado por la CARDER corresponde al seguimiento de la resolución N°2524 de 2009 el 21 de Enero 2014; este documento técnico contiene información general de la empresa prestadora del servicio de acueducto, Ubicación y nombre de la fuente abastecedora, descripción observaciones conclusiones y recomendaciones.

En conclusiones encontramos que el caudal captado supera considerablemente lo concesionado, por lo tanto el acueducto deberá regular en el punto de captación o desarenador el caudal que se envía hacia la planta de tratamiento de tal forma que no supere al concesionado y deberá procurar que no se produzcan sobrantes al interior de la planta, dado que si bien el agua se está regresando a la misma fuente captada, esta descarga se realiza en un tramo lejano a la captación, por ellos los sobrantes no se podrán descontar y será tomado como captado.

Se tiene en cuenta documentos oficiales de la Secretaria Municipal de Salud Dosquebradas como lo son los documentos:

- **Informe Acueductos Comunitarios de Dosquebradas:** En este documento se describe todos los acueductos Comunitarios de Dosquebradas, en ellos se describen los acueductos, dirección, nombre de los representantes, número de descriptores, población abastecida y longitud de la red.

- **Informe de patologías de la ADO:** en este informe se muestran la mayoría de casos de enfermedades origen hídrico a los usuarios de los acueductos comunitarios y la taza de ataque por años.
En este informe encontramos que en el acueducto comunitario Santiago Londoño en el año 2013 se reportaron 80 casos de personas con enfermedades de origen hídrico de los cuales 28 presentaron diarrea y gastroenteritis de presunto origen infeccioso, 7 con infección intestinal viral y 5 por otras enteritis virales; en dicho informe se encuentra un historial de todos los casos reportados en los últimos años (cuadro 3).

Cuadro 3. Diagrama Histórico de patologías de origen hídrico reportadas en el barrio Santiago Londoño.

-Reporte de resultados externos: en este informe se describe los resultados de los exámenes bacteriológicos realizados a las muestras del agua en diferentes partes del acueducto.

El examen realizado el 02 de mayo del 2013 Por la secretaría municipal de salud de Dosquebradas al acueducto comunitario Santiago Londoño muestra como resultado que el cloro residual esta sobre los niveles exigidos por la norma, además presenta 1UFC/ml coliformes total (Unidad formadoras de colonia) lo cual
hace que el agua no esté en condiciones aptas para el consumo humano. En el siguiente cuadro se presenta los resultados obtenidos:

Cuadro 4. Reporte de resultados externos en el acueducto comunitario. Santiago Londoño 2 mayo 2013

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbiedad</td>
<td>0.61</td>
</tr>
<tr>
<td>Color</td>
<td>2</td>
</tr>
<tr>
<td>pH</td>
<td>7.3</td>
</tr>
<tr>
<td>Cloro</td>
<td>2.7</td>
</tr>
<tr>
<td>Alcalinidad</td>
<td>21.6</td>
</tr>
<tr>
<td>Conductividad</td>
<td>59.5</td>
</tr>
<tr>
<td>Mesofílos</td>
<td>2</td>
</tr>
<tr>
<td>Coliformes Fecales</td>
<td>0</td>
</tr>
<tr>
<td>Coliformes Totales</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Secretaría de Salud Municipal de Dosquebradas

En el estudio de la calidad de aguas potable se determinaron una serie de parámetros físico-químicos, con objeto de conocer si el valor de estos parámetros se encuentra dentro del intervalo permitido que marca la norma vigente.
5.3 **MARCO GEMOGRÁFICO.**

5.3.1 **Ubicación**

Dosquebradas es considerado un municipio industrial en el departamento de Risaralda- Colombia, ubicado entre 4° 51´ latitud norte, 75° 41´ de longitud oeste del meridiano de Greenwinch, a una altura de 1.420 m.s.n.m y un área de 70,8 km², de los cuales 14,1 km² aproximadamente, corresponden a la zona urbana y 56,7 km² es rural. Con límites al Norte y el Oriente con el municipio de Santa Rosa de Cabal, por el Occidente con los municipios de Marsella y Pereira, al sur con el municipio de Pereira como se muestra en la siguiente figura(Alcaldía de Dosquebradas, 2007).

Fuente de los datos: Mapa de veredas suministrado por la Gobernación de Risaralda, año 2000
De acuerdo con la información del Censo del 2005, se hace una descripción de la población en el siguiente cuadro:

Cuadro 5. Población Municipio de Dosquebradas-Risaralda DANE: Censo 2005

<table>
<thead>
<tr>
<th>POBLACIÓN</th>
<th>CANTIDAD</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBANA</td>
<td>164.437</td>
<td>94.80%</td>
</tr>
<tr>
<td>RURAL</td>
<td>9.015</td>
<td>5.20%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>173.452</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: DANE Censo 2005

5.3.2 Red Hídrica Superficial

La red hídrica del territorio municipal de Dosquebradas está conformada por cuencas, subcuencas y micro cuencas.

5.3.2.1 Cuenca Del Río Otún

Subcuencas: Quebrada Dosquebradas, Quebrada San José, con las microcuencas: Aguazul, Manizales-Soledad, Tomineja-Barrizal, Molinos, La Víbora, Gutiérrez-Cristalina, Frailes y La Fría para la primera subcuenca; para la segunda se tienen las microcuencas Dosquebradas (cuenca baja) y San José (cuenca baja), aparte de estas se tiene como afluente directo el río Otún. La segunda cuenca es el Río Cauca, se tiene como sub cuenca del Río San Francisco, con las microcuencas La Grecia y La Albania(JULIO, 2009).

La Cuenca Hidrográfica del río Otún ha sido dividida en tres tramos (figura 8): cuenca alta, que va desde su nacimiento hasta las microcuencas Volcanes y La...
Bananera – La Bella; cuenca media, inicia en la quebrada San José, hasta la Desembocadura de la quebrada Dosquebradas y cuenca baja, a partir de la microcuenca Combia Alta hasta su desembocadura en el río Cauca. De acuerdo con la sectorización hidrográfica, se definen las microcuencas que hacen parte de cada una, como se aprecia en la siguiente figura:

Figura 10. División de la Cuenca en Tramos, Dosquebradas, 2014

Fuente: SIG CARDER

En este contexto, la Corporación Autónoma Regional de Risaralda -CARDER- y la Unidad Administrativa Especial de Parques Nacionales Naturales Territorial Noroccidente -UAESPNN-, conformaron la Comisión Conjunta para la Ordenación y Manejo de la Cuenca Hidrográfica del río Otún, la cual está localizada en el flanco Occidental de la Cordillera Central, en el departamento de Risaralda, subregión I y comprende los municipios de Pereira, Santa Rosa de Cabal, Dosquebradas y Marsella, tiene una superficie de 480,61 Km2, nace en el caño Alsacia, afluente de la Laguna del Otún, a una altura de 3980 msnm y desemboca
en el río Cauca a los 875 msnm. Cumple un importante papel en la subregión I, ya que es la principal fuente abastecedora de los municipios de Pereira y Dosquebradas, tiene una función de conservación por encontrarse allí ecosistemas estratégicos y cuenta con un alto potencial para el desarrollo de la actividad eco turístico. (CARDER, 2006)

5.3.3 Geomorfología.

La zona de Dosquebradas se encuentra enmarcada dentro de las cotas 1.350 y 2.150 m.s.n.m., en donde los accidentes orográficos más importantes son los del Alto del Toro, El Oso, La Cruz y El Nudo; estos cerros presentan laderas largas de pendiente fuerte en su base delimitando en el sector del valle de Dosquebradas, donde descansa la parte urbana. Se destacan al mismo tiempo las morfologías de las colinas onduladas de pendientes, suaves que conforman el piedemonte cordillera. La hoya hidrográfica de la quebrada de Dosquebradas forma así un valle intramontano, con un frente amplio en la parte sur demarcado por el escarpe del río Otún (CARDER, 2000).

Las pendientes que existen el sector de Dosquebradas y especialmente en el sector de Frayles, permiten visualizar las zonas con diferente grado de inclinación del terreno, enmarcándola en diferentes unidades litológicas, que muestran determinado comportamiento respecto a la inclinación de los terrenos, basados en la presencia de terrenos erosivos.

Asimismo, el municipio de Dosquebradas se categoriza por tener un abundante flujo de agua que alcanzan corrientes fuertes, que pueden generar avalanchas y afectar zonas urbanas.
Situaciones que se pueden convertir particularmente frecuentes en las quebradas de Aguazul, Molinos y Manizales; que pueden ocurrir en la mayoría de los caudales del sistema hidrológico de la quebrada Dosquebradas (CARDER, 2000).

5.3.4 Ubicación Acueducto Comunitario Santiago Londoño Vela I y Vela II

El acueducto comunitario de estudio se encuentra ubicado en el barrio Santiago Londoño abastece 543 usuarios domésticos, 1 finca ganadera, 1 puesto de salud y 1 escuela.

El acueducto comunitario capta sus aguas de la quebrada San José, Cueca del río Otún, como se ilustra en la siguiente figura:

Figura 11. Ubicación Acueducto Comunitario Santiago Londoño Dosquebradas Risaralda-Colombia, Dosquebradas, 2014

![Ubicación Acueducto Comunitario Santiago Londoño](image)

Fuente: Sistema de coordenadas planas cartesianas con origen en el punto Terraza adoptado por el municipio de Pereira por intermedio de la Secretaría de Planeación como el plano oficial para la representación de su territorio. Plano elaborado por el IGAC en 1996 y referido a la Red ARENA (Antigua Red Nacional).
5.4 MARCO DEMOGRAFÍCO

5.4.1 Población Abastecida:

De acuerdo a la información suministrada por el acueducto comunitario Santiago Londoño y La Secretaria Municipal de Salud Dosquebradas, el acueducto abastece el número de usuarios que se muestran en la siguiente cuadro:

Cuadro 6: Número de usuarios según tipo. Dosquebradas, 2014

<table>
<thead>
<tr>
<th>Tipo de Usuario</th>
<th>Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residencial</td>
<td>543</td>
</tr>
<tr>
<td>Comercial</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>547</td>
</tr>
</tbody>
</table>

Fuente: Acueducto Comunitario Santiago Londoño

De acuerdo con lo establecido en estos resultados(Secretaria Municipal de Salud de Dosquebradas;, 2013.)Haciendo promedio de 5 habitantes/suscriptor se halla una población Abastecida de 2715 Habitantes.

5.4.2 Estratificación

5.4.3 Servicio público de Acueducto:

En la actualidad, para la prestación del servicio de acueducto, el municipio tiene un convenio con los municipios de Santa Rosa y la empresa Aguas y Aguas de Pereira. Estos dos acueductos abastecen al 70% de la población, la Empresa de Servicios Públicos del Municipio se encarga de la facturación y cobranza a los usuarios de este servicio, así como los de basura y alcantarillado. El 30% de sus habitantes solucian su abastecimiento a través de acueductos particulares: comunitarios y privados. (AMAC, 2002)
5.5 **MARCO HISTÓRICO**

El Acueducto comunitario que abastece a los barrios Santiago Londoño, Vela I y Vela II presentó dos momentos históricos, el primero de ellos en el año 1972 donde se le conocía como barrio Comuneros, se abastecía de agua por los barrios Japón, Villa Fany, Aurora, otro momento fue en 1983 donde se conoce como Santiago Londoño; surgió de la idea de la comunidad de tener acueducto comunitario propio para el sector.

La comunidad empezó a tramitar todas las diligencias para la creación y adecuación de infraestructura del acueducto, con ayuda del gobernador de esa época el señor Diego Patiño Amariles, quien dio la orden a planeación en enviar a ingenieros y topógrafos a inspeccionar la zona, con el objetivo de mejorar el servicio.

Se cambió las tuberías y la bocatoma, los ingenieros presentaron el informe al gobernador, con su respectivo presupuesto para la recuperación del acueducto, el gobernador acepta los parámetros, pero con una condición que la comunidad trabajara en conjunto.

A mediados del año 1988 se iniciaron los trabajos de optimización del sistema, toda la comunidad colaboró en la recuperación del acueducto, con la colaboración de obreros del sector para trasladar los materiales necesarios para la infraestructura, terminando en año 1998.

Se da la creación de los barrios Vela I y Vela II en el 1998 y 1999, los cuales se unen al acueducto comunitario Santiago Londoño para ser abastecidos por la planta de tratamiento tipo FIME (filtración en múltiples etapas).
5.6 MARCO LEGAL.

Para garantizar una viabilidad normativa del presente trabajo de investigación debemos analizar con profundidad la normatividad legal vigente de la actualidad. La normatividad del sistema propuesto puede dividirse en 3 categorías: Normas que definen el ordenamiento de las cuencas hidrográficas planeamiento del uso y manejo sostenible de los recursos naturales renovables, Normas que rigen el desarrollo administrativo y operacional de los acueductos comunitarios, Y el Reglamento técnico para el sector de agua potable y saneamiento básico, RAS y demás normas aplicables al control de calidad del agua (SuperIntendencia de Servicios Públicos de Colombia.., 2014).

5.6.1 Normas de ordenamiento de las cuencas hidrográficas

Estas normas hablan del planeamiento del uso y manejo sostenible de los recursos renovables:

<table>
<thead>
<tr>
<th>Norma Ley o Decreto</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Ley 99 de 1993</td>
<td>Ley Nacional del medio ambiente. Por la cual se crea el Ministerio de Ambiente, Vivienda y Desarrollo Territorial, se reordena el sector público encargado de la gestión y conservación del medio ambiente y los recursos naturales renovables y se organiza el Sistema Nacional Ambiental -SINA-.</td>
</tr>
<tr>
<td>Ley 99 de 1.993, Artículo N° 2, Numeral 1</td>
<td>Establece la preservación y restauración del ambiente, mejoramiento y utilización racional de los recursos naturales</td>
</tr>
<tr>
<td>Ley 99 de 1.993, en el Artículo N° 7</td>
<td>renovables, según el desarrollo armónico del hombre y de dichos recursos, la disponibilidad permanente de estos recursos, para el beneficio de la salud y el bienestar de los presentes y futuros habitantes del territorio nacional.</td>
</tr>
<tr>
<td>Ley 99 de 1.993, Artículo N° 68.</td>
<td>Regula y orienta el diseño y planificación del uso del suelo nacional en sus diferentes cabeceras municipales, planificando la explotación adecuada y uso del desarrollo sostenible.</td>
</tr>
<tr>
<td>Ley 99 de 1993, Artículo N° 310.</td>
<td>Hace referencia a que el Estado debe garantizar de manera integral el aprovechamiento de los recursos naturales a fin de garantizar su desarrollo sostenible, conservación, restauración, conforme a lo dispuesto en el Artículo 80 de la Constitución Política Nacional, los planes ambientales de las entidades territoriales estarán sujetos a las reglas de armonización de que trata el presente artículo.</td>
</tr>
<tr>
<td>Ley 99 de 1993, Artículo N° 310.</td>
<td>Teniendo en cuenta los factores ambientales o socioeconómicos, podrán crearse distritos de manejo integrado de recursos naturales renovables, para que constituyan modelos de aprovechamiento racional. Dentro de estos distritos se</td>
</tr>
</tbody>
</table>
permitirán actividades económicas controladas, investigativas, educativas y recreativas.

<pre><code> | Por medio del cual se reglamentan los instrumentos para la planificación, ordenación y manejo de las cuencas hidrográficas y acuíferos. |
</code></pre>
<p>|--------------------------|--|
| Ley 165 de 1.994 | La cual define que Colombia se acoge al convenio internacional sobre Biodiversidad, las definen específicamente como zonas que han sido reguladas para ser administradas geográficamente en cuestiones de manejo ambiental y conservación del agua comunitaria, con el fin de alcanzar los objetivos específicos de conservación y desarrollo sostenible ambiental. |
| Ley 1333 de 2009 | Por la cual se establece el procedimiento sancionatorio ambiental y se dictan otras disposiciones. |
| Decreto 2811/1974 | Código Nacional de Recursos Naturales |
| POMCA | Los POMCA son instrumentos de planificación que propician espacios de |</p>
<table>
<thead>
<tr>
<th>encuentro entre instituciones que comparten responsabilidades en la ordenación del territorio, actores con diversos intereses y planes e instrumentos con alcances y propósitos particulares, que se han generado en otros contextos normativos, pero que necesariamente aportan al objetivo final de ordenamiento ambiental del territorio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución CARDER 567 de 1997</td>
</tr>
</tbody>
</table>

5.6.2 Normas que rigen el desarrollo administrativo y operacional de los acueductos comunitarios:

La descentralización administrativa, política y fiscal que se gestó en Colombia, por norma legislativa en 1986 y constitucional a partir de 1991, que pretende fortalecer la autonomía de las regiones en el manejo de los recursos e inversión para el cubrimiento de sus necesidades de desarrollo, en la práctica ha significado que las regiones cedan su capacidad de decisión sobre el manejo presupuestal al poder ejecutivo central, mientras éste último asigna más funciones y disminuye la inversión en los municipios y departamentos. Es decir que el Estado descentraliza sus funciones y centraliza recursos y poder. Este hecho disminuye
la inversión que las alcaldías hacen al desarrollo municipal y delega a los ciudadanos la solución de sus propias necesidades. (Alcaldía de Bogotá, 2013)

Dentro de los actores estatales se encuentra la Corporación Autónoma Regional del Risaralda CARDER, dentro de sus funciones está la de ejecutar políticas planes y programas y proyectos atinentes al tema ambiental y de recursos naturales, así como hacer cumplir y aplicar las disposiciones legales vigentes, es decir es la máxima autoridad ambiental en la región. Debe participar en procesos de planificación y ordenamiento, por tanto contribuir al desarrollo sostenible de la región. La participación de la corporación incide directamente en el conflicto por el manejo del recurso hídrico en el municipio, como ente regulador y de control en procesos efectuados por las asociaciones comunitarias que abastecen recurso y el resto de prestadores en Dosquebradas.

También se encuentran las instituciones del Estado, representadas en la alcaldía municipal con sus secretarías de Planeación, Control y Desarrollo Social, el Ministerio de Desarrollo Económico, la Comisión Reguladora de Agua Potable, la Superintendencia de Servicios Públicos y la Cámara de Comercio de Dosquebradas.

<table>
<thead>
<tr>
<th>Norma Ley o Decreto</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ley 142 de 1994</td>
<td>El Estado Colombiano determina quienes pueden prestar los servicios públicos, entre otras las empresas de servicios públicos privada y las comunidades organizadas. Además, el Estado mediante la ley 142 de 1994 establece los niveles de</td>
</tr>
</tbody>
</table>
Responsabilidad que tienen las diferentes instituciones públicas en la vigilancia y control para la prestación de los servicios públicos, por parte organizaciones con carácter oficial, privado o mixto, o directamente por la administración central del respectivo municipio. De tal forma que delega tal responsabilidad en la superintendencia de servicios públicos domiciliarios, la comisión de regulación de agua potable y los municipios.

<table>
<thead>
<tr>
<th>Decreto 421 de 2000</th>
<th>Define los prestadores de los servicios públicos que se refiere la ley en municipios menores, zonas rurales y áreas urbanas específicas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreto 3930 de 2010</td>
<td>Por el cual se reglamenta parcialmente el Título I de la Ley 9 de 1979, así como el Capítulo II del Título VI – Parte III – Libro II del decreto – Ley 2811 de 1974 en cuanto a usos del agua y residuos líquidos y se dictan otras disposiciones.</td>
</tr>
<tr>
<td>Decreto No. 1640 de 2012</td>
<td>Por medio del cual se reglamentan los instrumentos para la planificación, ordenación y manejo de las cuencas hidrográficas y acuíferos.</td>
</tr>
<tr>
<td>Ley 9 de 1979</td>
<td>Por la cual se dictan medidas sanitarias; Las normas generales que servirán de base a las disposiciones y</td>
</tr>
</tbody>
</table>
reglamentaciones necesarias para preservar, restaurar y mejorar las condiciones sanitarias en lo que se relaciona a la salud humana.

5.6.3 Reglamento técnico para el sector de agua potable y saneamiento básico, RAS 2000.

Una de las obligaciones del estado social de derecho, señalada en la carta política, es velar por el bienestar y mejoramiento de la calidad de vida de los ciudadanos, lo que es sinónimo de salud. Quienes prestan el servicio público de acueducto son los responsables del cumplimiento de las normas de calidad del agua potable establecidas en el decreto 475 de 1998 y deben garantizar la calidad permanentemente y en cualquiera de los puntos del sistema de distribución.

Las normas ambientales son de orden público y no podrán ser objeto de transacción o de renuncia a su aplicación por las autoridades o los particulares. (Art. 107 de la Ley 99 de 1993).

Las disposiciones de los siguientes decretos son de orden público, de obligatorio cumplimiento y con ellas se regulan las actividades de inspección, vigilancia y control relacionadas con la calidad del agua para consumo humano en todo el territorio nacional. (Art. 2 Decreto 475 de 1998).

<p>| Resolución N° 2320 de 2009 | Por la cual se modifica parcialmente la Resolución numero 1096 de 2000 que adopta el Reglamento Técnico para el sector de Agua Potable y Saneamiento Básico (RAS). |</p>
<table>
<thead>
<tr>
<th>Sección II título B. sistemas de acueducto</th>
<th>Sección III Título C. Sistemas de potabilización.</th>
</tr>
</thead>
</table>

DECRETO 475 DE 1998

Se expiden normas técnicas de calidad de agua. Otorga los parámetros que deben cumplir las aguas potables, se citan en el artículo 155 los métodos que se utilizan para cumplir los parámetros.

Decreto 1575 Res. 2115 de Mayo de 2007.

Decreto 1575 de 2007

Por el cual se establece el Sistema para la Protección y Control de la Calidad del Agua para Consumo Humano. Con el fin de monitorear, prevenir y controlar los riesgos para la salud humana causada por su consumo.

Ley 142 de 1994

Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones.

Esta Ley se aplica a los servicios públicos domiciliarios de acueducto, alcantarillado, aseo, energía eléctrica, distribución de gas combustible, telefonía fija pública básica conmutada y la telefonía local móvil en el sector rural; a las actividades que realicen las personas.
prestadoras de servicios públicos de que trata el artículo 15 de la presente Ley,
6 METODOLOGIA

La metodología utilizada para el desarrollo del diagnóstico se realizó con los siguientes parámetros:

- Revisión bibliográfica de diferentes fuentes e información suministrada. Se elige la información base de mayor importancia para el diagnóstico, a partir de la cual se construye un inventario del acueducto comunitario Santiago Londoño.
- Se realiza visita al acueducto Santiago Londoño para el reconocimiento y acercamiento a la comunidad y a los entes administrativos, además de observación de infraestructura.
- Durante las visitas al acueducto se realizan encuestas a las personas que hacen parte de los entes administrativos debido a su mayor conocimiento sobre los procesos realizados a estas entidades.
- Se obtiene datos mediante la utilización de la cartografía, lo que permite ubicar todo el sistema del acueducto.
- Revisión de la información obtenida se digita a través de la clasificación de acuerdo a la gestión del servicio (cobertura, calidad, continuidad, capacidad, fuente de abastecimiento).
- Se desarrolla el análisis estructural y se definen sus componentes y función), siendo un método a través del cual se visualiza la forma como cada uno de los elementos identificados influye sobre los demás.
- De acuerdo al diagnóstico se elaboran análisis resultados y sugerencias para la sostenibilidad y buen funcionamiento del acueducto.

A continuación se describen cada uno de los aspectos para la elaboración del diagnóstico técnico aplicable a los componentes del sistema de acueducto.

Metodología Cuenca Hidrográfica
Se recopila información con los entes encargados de estos recursos como lo son la CARDER, los institutos de investigación, instituciones administrativas del medio ambiente y el aporte de los diferentes actores con presencia en la cuenca.

Se hace una descripción general de la cuenca, estado de cada uno de los componentes, biodiversidad, componente socioeconómico.

Los parámetros analizados son:

Ubicación y descripción general de la cuenca, desde la gran cuenca hasta la subcuenca y microcuenca, altura sobre el nivel del mar, su recorrido y sus límites.

Se presenta mediante un cuadro los componentes ambientales de la microcuenca y su situación ambiental y usos del suelo.

Se describen los posibles riesgos y amenazas, y se calcifican dependiendo la posibilidad de que se produzca un daño o catástrofe en el medio ambiente debido a un fenómeno natural o a una acción humana cada uno de los riesgos posibles de ocurrir y afectación o no a grandes colectivos.

<table>
<thead>
<tr>
<th>Cuadro 7: Clasificación de riesgos y amenazas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Clasificación</td>
</tr>
<tr>
<td>INMINENTE: Si el evento tiene predisposición a ocurrir, es evidente y detectable</td>
</tr>
<tr>
<td>PROBABLE: Si el evento ya ocurrió bajo ciertas condiciones</td>
</tr>
<tr>
<td>POSIBLE: Si el evento no ha ocurrido, pero puede suceder</td>
</tr>
</tbody>
</table>
Se analiza las características físico-ambientales y socio económicas del área definida. Zonificación y definición de Usos y reglamentación para el desarrollo de la zona, concertado con comunidad e instituciones.

6.1 Metodología del sistema de acueducto

6.1.1 Descripción general de la empresa Prestadora de Servicio:

Se hace una descripción general de la empresa prestadora de servicio, Dirección, nombre del representante, número de usuarios y demás datos informativos del acueducto.

6.1.2 Descripción de la infraestructura actual del sistema de acueducto:

Se realiza una vista desde la bocatoma del acueducto hasta la red de distribución, se describen sus componentes sus dimensiones y se elabora un esquema del sistema.

6.1.3 Descripción de los componentes del sistema de acueducto:

Se analiza desde la captación hasta las redes de distribución del acueducto teniendo en cuenta su estado, funcionamiento, infraestructura y mantenimiento. En el Diagnóstico se hace descripción, estado y funcionamiento de cada uno de los componentes que conforman el sistema del acueducto

6.1.3.1 Captación

Para este componente se tiene en cuenta criterios como: el tipo de (lateral, flotante, subterránea, lecho filtrante, entre otros.), estado, funcionamiento, dimensiones, tiempo de operación, periodo de diseño.
6.1.3.2 Aducción

En relación con este componente se valora de acuerdo a su estado, tipo, material, periodo de diseño, longitud, la existencia de válvulas reguladoras de presión, ventosas, señalización y fugas.

6.1.3.3 Desarenador:

Con relación a esta estructura se verifica su existencia, su estado, ubicación periodo de diseño, número de módulos, desagües. Finalmente y dependiendo de la información disponible se a confirmar su capacidad.

6.1.3.4 Conducción:

En este componente se evalúa su estado, tipo (canal tubería), material, periodo de diseño, válvulas de purga, válvulas reguladoras de presión, registros, señalización, anclajes, identificación de zonas vulnerables y la estimación de posibles pérdidas de línea.

6.1.3.5 Planta de tratamiento de Agua potable:

Con relación a las estructuras para la potabilización del agua se analiza partiendo de tipo de planta, en este caso FIME: sus componentes, Funcionamiento, periodo de diseño, estado, los procesos y estructuras que hacen parte del sistema, tiempo de operación, si cuenta o no con laboratorio para el análisis de agua, existencia o no de macromedidores al ingreso a la planta o si se hace medición a través de estructuras como canaletes de aforo.

6.1.3.6 Tanque de cloración

En este componente se investiga su existencia, estado, equipos de cloración, y dosificación.
6.1.3.7 Almacenamiento

Se hace análisis de la estructura, dimensiones, capacidad, componentes (llaves, desagüe) y ventilación.

6.1.3.8 Red de distribución

Se hace la visita a red desde la primera vivienda hasta la última, evaluando componentes de micromedición punto de toma de muestras estado de la red y haciendo el esquema general del plano de distribución.

6.2 Metodología Indicadores del servicio de acueducto:

 6.2.1 Medición

Se indaga a los administradores del acueducto sobre la existencia de macromedicinión y micromedición para el volumen de agua tratado y distribuido. Su estado y funcionamiento.

 6.2.2 Cobertura de redes:

En la vista se analiza y se indaga sobre la cobertura de redes de distribución su estado, longitudes y diámetros.

 6.2.3 Continuidad del servicio:

Se investiga si el acueducto presenta fallas en la prestación del servicio de manera continua o de manera intermitente.
6.2.4 Calidad del agua:

Este parámetro se analiza con los resultados bacteriológicos realizados por la Secretaría Municipal de Salud de Dosquebradas y la CARDER. Se analizan los parámetros y se hace una descripción de los resultados.

6.2.5 Dotación:

Calculamos los caudales de agua necesitados para satisfacer la demanda de la población para su consumo en cierto tiempo.

Las formulas están expresadas en el marco conceptual (Cap. 5.1).

6.3 Metodología cuadro de discusión

Se construye un cuadro resumen que tiene los siguientes componentes:

6.4.1 Componente

Son las partes que conforma el sistema de abastecimiento de agua potable como bocatoma, captación, desarenador, conducción, planta de tratamiento, filtros lentos, tanque de cloración, tanque de almacenamiento y red de distribución.

6.4.2 Estructura Actual

Se realiza un resumen de las características actuales de cada uno de los componentes que conforman el acueducto.

6.4.3 Conclusiones

Se hace análisis de toda la estructura para determinar su estado actual
6.4.4 Recomendaciones

Se digiere la manera de mejorar las estructuras que conforman el sistema de agua potable.

6.4.5 Prioridad

La prioridad es el orden en que se debe optimizar los componentes del acueducto siendo el número 1 el más importante en la escala numérica y el número 9 de menor riesgo.
7 DESCRIPCIÓN DEL ESTADO Y FUNCIONAMIENTO DE LA INFRAESTRUCTURA EXISTENTE

7.1 Prestador del servicio de Acueducto

Municipio de Dosquebradas Risaralda; Acueducto Comunitario Santiago Londoño. En la actualidad el servicio de acueducto se presta atreves de la Asociación de usuarios del acueducto comunitario de los barrios Santiago Londoño, vela I y Vela II del municipio de Dosquebradas, su ubicación e información general se resume en el siguiente cuadro:

Cuadro 8. Información general de la empresa Prestadora

<table>
<thead>
<tr>
<th>Acueducto:</th>
<th>Asociación de Usuarios del Acueducto Comunitario Santiago Londoño.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre Representante legal:</td>
<td>Germán Prada Mayorca</td>
</tr>
<tr>
<td>Cargo:</td>
<td>Presidente</td>
</tr>
<tr>
<td>Dirección:</td>
<td>Mz A – Cs 4 Santiago Londoño</td>
</tr>
<tr>
<td>Teléfono:</td>
<td>3308078</td>
</tr>
<tr>
<td>E-mail:</td>
<td>asosantiagov@hotmail.com</td>
</tr>
<tr>
<td>Nit:</td>
<td>800.155.065-6</td>
</tr>
<tr>
<td>Fecha de constitución:</td>
<td>Febrero 25 del 2000</td>
</tr>
<tr>
<td>Nº De suscriptores</td>
<td>534</td>
</tr>
<tr>
<td>Población Abastecida:</td>
<td>2590</td>
</tr>
<tr>
<td>Longitud de la red:</td>
<td>8 km de aducción y 4.5 km de distribución</td>
</tr>
</tbody>
</table>
7.2 Descripción del sistema de Acueducto:

El sistema de acueducto funciona por gravedad, consta de una fuente de abastecimiento situada en la Quebrada San José (cuenca baja del río Otún). Una línea de Aducción, Un desarenador para pre tratamiento, una planta de tratamiento de agua potable (FIME), dos tanques de almacenamiento y red de distribución como se ilustra en la siguiente figura:

Figura 12: Esquema general del acueducto comunitario Santiago Londoño

Descripción de los componentes del sistema de acueducto:

Bocatoma:

La bocatoma es una estructura construida en el año 1988 en concreto reforzado. El acueducto comunitario se abastece continuamente de la fuente superficial denominada Quebrada San José.
En lo correspondiente a la bocatoma captada es de 9.2 l/s. Tiene azud para elevar el nivel de la quebrada con el fin de derivar parte del caudal a las acequias. (Figura 13)

Figura 13: Esquema general de la bocatoma

No evidencia fallas estructurales y funciona adecuadamente, como se muestra en las siguientes figuras 14 y figura 15.

Figura 14. Fuente de abastecimiento quebrada San José, Dosquebradas, 2013
7.2.1 Captación:

Está ubicada en las coordenadas X: 1020285 Y: 1159333; La captación se realiza mediante desviación lateral del cauce de la quebrada a través de un canal abierto de 8m de largo x 0.9m de ancho y 0.5m de fondo, y una rejilla de 0.9m de largo x0.5m de ancho x0.9m de fondo, pasando por una rejilla hacia una cámara de 0.6m de largo x 0.6m de ancho x 0.6m de fondo donde se capta el agua requerida y el resto reincorpora al cauce.

El agua ingresa a la recámara y es conducida por tubería de 6” hasta el tanque desarenador como se evidencia en la figura 16 y la figura 17.

7.2.2 Desarenador:

El tanque está ubicado a 300 m de la captación, cuenta con buena señalización y arborización a sus alrededores, como se ilustra en la figura 18.

El tanque desarenador tiene 10m de Longitud, 2m de ancho y 2.5m de profundidad, con una capacidad de 50 m3, el tanque es en concreto reforzado, con muros de 0.20m de espesor y está dividido en 3 módulos (figura 19), uno de entrada que recibe el agua proveniente de la captación, una zona de sedimentación y una zona de salida, cuenta con dos canales paralelos que evacuan las aguas sobrantes y las regresa al cauce de la quebrada por un canal cerrado.

Figura 18. Tanque desarenador, Dosquebradas, 2013
Este componente presenta desagüe y Compuerta de lavado, a la estructura se le realiza mantenimiento 1 vez cada 1 a 3 meses por el operario dependiendo el clima (figura 20).

Desde allí es conducida a la planta de tratamiento ubicada a 9Km en tubería de 6” la mitad del proyecto y el resto en tubería de 4”.

7.2.3 Conducción:

Es una tunería PVC de 6” en un tramo de 2 Km y de 4” pulgadas en 6 km con una longitud total de 8.5 km hasta la planta de tratamiento (figura 21).
Posee un caudal de diseño de 9.2 L/s. la línea de conducción cuenta con 8 Viaductos en Hierro dúctil (figuras 22 y 23), 12 válvulas ventosas; 9 de ½" y 3 de ¾"(figura 24), 3 válvulas de control como se ilustran en la figura 25 y no se cuenta con válvulas de purga.

Figura 22. Viaducto en acero pretensado, Dosquebradas, 2013
Figura 23. Viaducto en hierro dúctil, Dosquebradas, 2013

Figura 25. Llave de control, Dosquebradas, 2013

Su estado es bueno y tiene una edad aproximada de 20 años
7.2.4 Planta de Tratamiento de Agua potable- PTAP

El sistema cuenta con una planta de tratamiento de agua naturales tipo FIME con coordenadas X: 1023368 Y: 1157134 (figura 26).

La planta opera por medio de filtros dinámicos, la cual se encuentra distribuida así:

A la entrada se encuentra una válvula de cierre (figura 27), que sirve para el control del agua en la plata.

Figura 27. Válvula de Control, Dosquebradas, 2013
El agua pasa a un tanque de filtro descendente con dos divisiones, este tanque esta hecho en concreto reforzado con una longitud de 7m, ancho de 4.10m, una profundidad de 0.60m y un espesor de muros de 0.30m.

El agua pasa por dos filtros de grava, una gruesa de 2 pulgadas y grava de media como se ilustra en la siguiente figura:

Figura 28. Tanque filtro descendente, Dosquebradas, 2013

Después de este proceso encontramos una válvula de lavado de dichos filtros como se muestra en la figura 29, seguida de la válvula de control (figura 30).

Figura29. Válvulas de lavado, Dosquebradas, 2013
Posteriormente el agua pasa a las canaletas de aforo, con el fin de controlar el caudal de agua que llega a los tanques.

Se realizó aforo volumétrico en la tubería de lavado de los filtros de grava ya que allí pasa todo el caudal enviado desde el desarenador, la medición se llevó a cabo tomando tres mediciones con balde de 20 litros como se explica en el siguiente cuadro:

<table>
<thead>
<tr>
<th>VOLUMEN (L)</th>
<th>TIEMPO(S)</th>
<th>CAUDAL(l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1,4</td>
<td>14,28</td>
</tr>
<tr>
<td>20</td>
<td>1,3</td>
<td>15,38</td>
</tr>
<tr>
<td>20</td>
<td>1,4</td>
<td>14,28</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>20</td>
<td>1,36</td>
</tr>
</tbody>
</table>

Según lo anterior el caudal que está ingresando a la planta de tratamiento corresponde a 14.7 l/s lo cual sobrepasa el caudal autorizado por la resolución N° 2524 de noviembre de 2009, donde la CARDER otorga a la asociación de usuarios del acueducto comunitario concesión de aguas superficiales en cuantía
de 9.2 l/s, con una vigencia de 5 años. La anterior resolución se basó en el CT2845 de noviembre de 2009.

El agua es conducida a 3 tanques de filtro de gravilla ascendente. Este está conformado por 4 tipos de gravilla: Piedra de mano, piedra de 3 pulgadas, gravilla de 1 pulgada, y arena fina, como se muestra en las figuras 31 y 32.

Figura 31. Tanques filtros ascendentes, Dosquebradas, 2013

![Figura 31. Tanques filtros ascendentes, Dosquebradas, 2013](image)

Figura 32. Grava de filtro Ascendente, Dosquebradas, 2013

![Figura 32. Grava de filtro Ascendente, Dosquebradas, 2013](image)

El siguiente paso el agua es conducida a los canales de distribución donde se controla el aforo para los tanques de filtros lentos de arena, como se observa en la siguiente figura:
El agua después de ser distribuida pasa al canal de aforo donde se controla el caudal de entrada al tanque de filtros lentos de arena.

7.2.5 Filtros Lentos de arena

El tanque es de concreto reforzado, redondo con un diámetro de 15 metros y una profundidad de 1.50 m, se encuentra distribuido de abajo hacia arriba en el siguiente orden y como se ilustra en la figura 34:

- 50 cm de pierda de mano
- 30 cm de Arenón
- 20 cm de arena de $\frac{1}{2}$

La arena de media debe permanecer con algas vivas.
7.2.6 Tanque de cloración:

El agua después del filtro lento es conducida a una canaleta de aforo principal donde es el punto de cloración (figura 34), pasando al tanque de almacenamiento.

El punto de cloración es una caseta artesanal, se encuentra sobre el tanque de almacenamiento cuenta con una bomba peristáltica que envía la solución disuelta al tanque de contacto de almacenamiento (figura 35), pero este no tiene diseño hidráulico para tal fin, finalmente es el único tratamiento con el que cuenta el agua de este sector.
7.2.7 Almacenamiento:

Ubicado a 20 metros de los filtros lentos se encuentra 2 tanques de almacenamiento uno de 7 m de largo x 7 m de ancho x 3.70 de fondo y otro de 6 m de largo x 5 m de ancho x 2.50 de fondo con capacidad para 80 m3 de agua, los tanques cuentan con tubería de ventilación sobre la placa superior, y cuenta con su sistema de descarga para la limpieza de lodos, como se ilustra en la siguiente figura:

Figura 37. Tanque de almacenamiento, Dosquebradas, 2013
7.2.8 Red de distribución:

La red de distribución tiene una longitud total de 4.5 km. El agua sale de la planta en tubería de 4 pulgadas en tubería de PVC hasta el punto de entrada del barrio ubicado a 2 km de la planta como se muestra en la figura 38.

El agua es distribuida en el barrio Santiago Londoño, Vela I y Vela II.

No se mide el volumen de pérdidas ya que no se cuenta con los equipos necesarios para su medición; Se conoce los diámetros de la tubería pero no sus longitudes (ver plano de anexo)

Figura 38: esquema de red de distribución Barrios Santiago Londoño, Vela I y Vela II.
7.3 Indicadores del servicio del acueducto

7.3.1 Cobertura de redes

El acueducto Santiago Londoño presenta una cobertura de los barrios Vela I y Vela II del 100 % correspondiente a 2670 usuarios.

7.3.2 Macromedición y micromedicion:

El acueducto comunitario no cuenta con macromedidores para la medición de volúmenes captados ni distribuidos pero sí con micromedidores para el volumen de agua unitario distribuido.

7.3.2.1 Cobertura micromedicion

El acueducto Santiago Londoño presenta una cobertura en micromedicion del 100%

7.3.3 Continuidad en el servicio

El servicio d acueducto es prestado en forma continua las 24 horas del día los 7 días de la semana.

7.3.4 Calidad del agua

Se cuenta con monitoreo de agua potable, por parte del acueducto comunitario una vez al día, la Secretaría Municipal de Dosquebradas y de la Universidad tecnológica lo realiza 1 vez al mes..

De acuerdo a los análisis por parte de la Secretaría Municipal de Dosquebradas, Presenta contenidos de Coliformes totales, y un alto nivel de cloro en la muestra. Como se muestra en el siguiente cuadro:
Cuadro 10. Reporte de resultados externos 2013
Secretaría de Salud Municipal de Dosquebradas
Acueducto Santiago Londoño, Vela I y Vela II Mayo-Agosto 2013

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>02-may-13</th>
<th>15-jun-13</th>
<th>13-jul-13</th>
<th>16-ago-13</th>
<th>VALOR NORMA</th>
<th>UNIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbiedad</td>
<td>1,15</td>
<td>0,55</td>
<td>3,92</td>
<td>1,15</td>
<td>≤2</td>
<td>UNT</td>
</tr>
<tr>
<td>Color</td>
<td>18</td>
<td>6</td>
<td>24</td>
<td>18</td>
<td>≤15</td>
<td>Unidades de color</td>
</tr>
<tr>
<td>pH</td>
<td>7,7</td>
<td>7,37</td>
<td>7,76</td>
<td>7,7</td>
<td>6,5 - 9,0</td>
<td>Unidades de pH</td>
</tr>
<tr>
<td>Cloro</td>
<td>0,13</td>
<td>0,2</td>
<td>0,43</td>
<td>0,13</td>
<td>0,3 - 2,0</td>
<td>mg/L</td>
</tr>
<tr>
<td>Alcalinidad</td>
<td>28,08</td>
<td>28,08</td>
<td>47,52</td>
<td>28,08</td>
<td><100</td>
<td>mg/L</td>
</tr>
<tr>
<td>Conductividad</td>
<td>68,3</td>
<td>58</td>
<td>108,3</td>
<td>68,3</td>
<td><1000</td>
<td>Unidades de pH</td>
</tr>
<tr>
<td>Mesofílcos</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td><100</td>
<td>UFC/ml</td>
</tr>
<tr>
<td>Coliformes Fecales</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>UFC/ml</td>
</tr>
<tr>
<td>Coliformes Totales</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>UFC/ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>02-may-13</th>
<th>15-jun-13</th>
<th>13-jul-13</th>
<th>16-ago-13</th>
<th>VALOR NORMA</th>
<th>UNIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbiedad</td>
<td>0,33</td>
<td>0,47</td>
<td>0,29</td>
<td>3,12</td>
<td>≤2</td>
<td>UNT</td>
</tr>
<tr>
<td>Color</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>≤15</td>
<td>Unidades de color</td>
</tr>
<tr>
<td>pH</td>
<td>7,44</td>
<td>7,31</td>
<td>7,61</td>
<td>7,93</td>
<td>6,5 - 9,0</td>
<td>Unidades de pH</td>
</tr>
<tr>
<td>Cloro</td>
<td>3,65</td>
<td>0,24</td>
<td>0,07</td>
<td>0,68</td>
<td>0,3 - 2,0</td>
<td>mg/L</td>
</tr>
<tr>
<td>Alcalinidad</td>
<td>23,76</td>
<td>23,76</td>
<td>25,92</td>
<td>28,36</td>
<td><100</td>
<td>mg/L</td>
</tr>
<tr>
<td>Conductividad</td>
<td>61</td>
<td>56,3</td>
<td>62,4</td>
<td>127</td>
<td><1000</td>
<td>µS/cm</td>
</tr>
<tr>
<td>Mesofílcos</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td><100</td>
<td>UFC/ml</td>
</tr>
<tr>
<td>Coliformes Fecales</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>UFC/ml</td>
</tr>
<tr>
<td>Coliformes Totales</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>UFC/ml</td>
</tr>
</tbody>
</table>

7.3.5 Población Abastecida:

De acuerdo a la información suministrada por el acueducto comunitario Santiago Londoño y La secretaria municipal de Salud Dosquebradas, el acueducto abastece:
Cuadro 11: Usuarios Acueducto Comunitario Santiago Londoño.

<table>
<thead>
<tr>
<th>Tipo de Usuario</th>
<th>Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residencial</td>
<td>543</td>
</tr>
<tr>
<td>Comercial</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>547</td>
</tr>
</tbody>
</table>

7.3.6 Estratificación

La asociación de acueducto comunitario Santiago Londoño según SUI lo define como: Organización Autorizada-Prestador área o Zona urbana estrato 2.

7.3.7 Dotación

La dotación neta depende del nivel de complejidad del sistema y sus valores mínimo y máximo se establecen de acuerdo con la tabla

Cuadro 12. Dotación neta Ras 2000 Título B.2

<table>
<thead>
<tr>
<th>Nivel de complejidad del sistema</th>
<th>Dotación neta mínima (L/hab día)</th>
<th>Dotación neta máxima (L/hab día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Medio</td>
<td>120</td>
<td>175</td>
</tr>
<tr>
<td>Medio alto</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>Alto</td>
<td>150</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: (RAS: Resolución Nº 2320, 2009)
7.3.8 Dotación Neta

Teniendo en cuenta el nivel de complejidad del sistema hallado anteriormente tendremos que para dotación neta Máxima para el nivel de complejidad MEDIO es de 120 L/hab-día.

7.3.9 Dotación Bruta:

\[
\text{DotacionBruta} = \text{Dotacion} \times (1 + 1.3\varphi)
\]

\[
\text{DotacionBruta} = 120 \text{ L/Hab-dia} \times (1.3) = 156 \text{ L/Hab-dia}
\]

7.3.10 Caudal Medio Horario:

\[
\text{Caudalmediohorario} = \frac{\text{DotacionBruta} \times \text{N°dehab}}{86400}
\]

\[
\text{Caudalmediohorario} = 156 \text{ Lhd} \times 2715 \text{ h} = 4.90 \text{ L/S}
\]

7.3.11 Caudal Máximo Diario:

\[
\text{QMD} = \text{Qmd} \times k_1
\]

\[
\text{QMD} = 4.90 \text{ L/S} \times 1.4 = 6.86 \text{ L/s}
\]

7.3.12 Caudal Máximo Horario:

\[
\text{QMH} = \text{QMD} \times k_2
\]

\[
\text{QMH} = 6.86 \text{ L/s} \times 1.8 = 12.34 \text{ L/s}
\]
7.4 Catastro de Redes:

En la actualidad el barrio Santiago Londoño, Vela I y Vela II no cuentan con sistema de registro de Planos ni de Fichas técnicas ni información estandarizada, relacionada con todos los detalles técnicos de ubicación y especificaciones técnicas de los elementos de la red instalados.

Red de distribución:

Se construyó un plano con la red de distribución del acueducto con sus longitudes diámetros y materiales. (Ver Anexo 1)

En el siguiente cuadro se resumen las longitudes y materiales de la tubería:

Cuadro13: Longitudes, material y diámetro tuberías del acueducto Santiago Londoño.

<table>
<thead>
<tr>
<th>Longitud (Mts)</th>
<th>Material</th>
<th>Diámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Pvc</td>
<td>6"</td>
</tr>
<tr>
<td>2000</td>
<td>Pvc</td>
<td>6"</td>
</tr>
<tr>
<td>6000</td>
<td>Pvc y Hierro Ductil</td>
<td>4"</td>
</tr>
<tr>
<td>1547</td>
<td>Pvc</td>
<td>4"</td>
</tr>
<tr>
<td>970.3</td>
<td>Pvc</td>
<td>3"</td>
</tr>
<tr>
<td>2342</td>
<td>Pvc</td>
<td>2"</td>
</tr>
</tbody>
</table>
8 ANALISIS Y RESULTADOS

- Cuenca: no se evidencia deslizamientos, deforestación, inundación y/o contaminación ya que es una zona de protección natural.
- Fuente: en el momento de presentarse gran volumen de caudal no se observa turbiedad aparente esto coincide con ser una zona protegida.
- No se observan deslizamientos aguas arriba ni elementos que generen este riesgo.
- En temporada seca cuando el caudal es bajo la derivación de captación obtiene el caudal necesario, manteniendo el caudal ecológico (figura 39).

 - Figura39. Fuente de abastecimiento quebrada San José, época de sequía Dosquebradas, 2013

- Bocatoma: la estructura cumple con la función de captar agua, la zona de quietamiento por ser lateral elimina el riesgo de ser arrancada por la crecida de la quebrada.
- Canal de derivación: tiene dos rejillas; la primera cumple con la eliminación de elementos que se encuentran en suspensión de gran tamaño y la rejilla de fondo capta agua para conducirla al tanque de derivación.
- No hay regulación de caudal.
- No cuenta con operario de tiempo completo.
- Desarenador: el caudal que recibe está por encima de su diseño.
- Conducción: para evitar el desabastecimiento de agua reparar la tubería en los tramos que se observa deterioro por la intemperie reforzando la estructura con anclajes en concreto, y así evitar posibles infiltraciones que generen derrumbes.
- Catastro de redes: no se cuenta con macromedidor, lo que impide un balance hídrico que permita establecer las pérdidas reales.

A continuación se analizan los parámetros más críticos de la calidad del agua con los valores obtenidos en las muestras del agua realizadas en el mes de Abril hasta Agosto del 2013 al acueducto comunitario, se analiza cada uno de los parámetros tanto en las muestras realizadas en el inicio de la captación y la muestra final en el punto de toma de la red de distribución.
Estos parámetros están definidos en el marco conceptual (cap. 5.1)

a. Turbiedad:

Cuadro 14. Resultados de la muestra respecto a Turbiedad

<table>
<thead>
<tr>
<th>FECHA:</th>
<th>02/05/2013 Hasta 16/08/2013</th>
<th>HORA:</th>
<th>9:11 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED:</td>
<td>Inicial</td>
<td>FUENTE:</td>
<td>Quebrada La Cristalina</td>
</tr>
<tr>
<td>ACUEDUCTO:</td>
<td>Santiago Londoño</td>
<td>TIPO DE AGUA</td>
<td>Tratada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra Inicial</th>
<th>PARÁMETRO</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbiedad</td>
<td></td>
<td>1.15</td>
<td>0.55</td>
<td>3.92</td>
<td>1.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra Final</th>
<th>PARÁMETRO</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbiedad</td>
<td></td>
<td>0.33</td>
<td>0.47</td>
<td>0.29</td>
<td>3.12</td>
</tr>
<tr>
<td>Norma</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Grafica 1: Comparativo de los resultados de la muestras de Turbiedad de los meses Mayo-Agosto 2013

En este parámetro se puede analizar que las muestras presentan baja turbiedad, esto quiere decir que los filtros están cumpliendo su función.
b. Color:

Cuadro 15. Resultados de la muestra respecto a Color

<table>
<thead>
<tr>
<th>Muestra Inicial</th>
<th>Muestra Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>FECHA: 02/05/2013 Hasta 16/08/2013</td>
<td>HORA: 9:15 AM</td>
</tr>
<tr>
<td>RED: Inicial</td>
<td>FUENTE: Quebrada La Cristalina</td>
</tr>
<tr>
<td>ACUEDUCTO: Santiago Londoño</td>
<td>TIPO DE AGUA: Tratada</td>
</tr>
<tr>
<td>Color</td>
<td>Color</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
</tr>
</tbody>
</table>

Grafica 2: Comparativo de resultados de la muestras de Color de los meses Mayo-Agosto 2013

![Grafica Color](image)

Análisis:

Este parámetro está en los valores permisibles por las norma.
c. Cloro:

Cuadro 16. Resultados de la muestra respecto a Cloro

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloro</td>
<td>0.13</td>
<td>0.2</td>
<td>0.43</td>
<td>0.13</td>
</tr>
</tbody>
</table>

| Valor Norma | 2 | 2 | 2 | 2 |

Grafica 3: Comparativo de resultados de la muestras de Cloro de los meses Mayo- Agosto 2013

Análisis:

Este parámetro está en los valores permisibles por las norma.
d. Coliformes Fecales:

Cuadro 17. Resultados de la muestra respecto a Coliformes fecales.

<table>
<thead>
<tr>
<th>Muestra Inicial</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes Fecales</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra Final</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes Fecales</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Valor Norma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Grafica 4: Comparativo de resultados de la muestras de Coliformes Fecales de los meses de Mayo-Agosto 2013

Análisis: Este componente se elimina con los filtros lentos en arena los cuales no están funcionando adecuadamente o tienen problemas de lavado.
La desinfección no se está realizando adecuadamente para eliminar la totalidad de microorganismos presentados en el agua, debido a que no existe un tanque de contacto de cloro.

e. Coliformes Totales:

Cuadro 18. Resultados de la muestra respecto a coliformes totales

<table>
<thead>
<tr>
<th>INFORMACIÓN DE LA MUESTRA:</th>
<th>Muestra Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>FECHA: 02/05/2013 Hasta 16/08/2013</td>
<td>HORA: 9:15 AM</td>
</tr>
<tr>
<td>RED: Inicial</td>
<td>FUENTE: Quebrada La Cristalina</td>
</tr>
<tr>
<td>ACUEDUCTO: Santiago Londoño</td>
<td>TIPO DE AGUA: Tratada</td>
</tr>
<tr>
<td>PARÁMETROS</td>
<td>Mayo</td>
</tr>
<tr>
<td>Coliformes Totales</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes Totales</td>
</tr>
<tr>
<td>Valor Norma</td>
</tr>
</tbody>
</table>

Grafica 5 Comparativo de resultados de las muestras de Coliformes Totales de los meses de Mayo-Agosto 2013
Análisis:

Este componente se elimina con los filtros lentos en arena los cuales no están funcionando adecuadamente o tienen problema de lavado.

Esto se evidencia en las enfermedades reportadas por la Secretaría de salud Municipal de Dosquebradas en el 2013 con 80 casos de enfermedades de origen hídrico
<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>ESTRUCTURA ACTUAL</th>
<th>CONCLUSIONES</th>
<th>RECOMENDACIONES</th>
<th>PRIORIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bocatoma</td>
<td>Es una estructura construida en el año 1988 en concreto reforzado no evidencia fallas estructurales y funciona adecuadamente</td>
<td>no posee compuertas para controlar el caudal</td>
<td>Poner válvula reguladora de caudal después del tanque de derivación</td>
<td>1</td>
</tr>
<tr>
<td>Captación</td>
<td>Tiene un canal abierto de 8m de largo x 0.9m de ancho x 0.5m de fondo su estado actual es bueno</td>
<td>el diámetro de la tubería de captación es mayor al requerido para la demanda</td>
<td>Cambiar el diámetro de la tubería de captación, ya que capta más de lo necesitado.</td>
<td>7</td>
</tr>
<tr>
<td>Desarenador</td>
<td>Es en concreto reforzado con muros de 0.20m de espesor y está dividida en 3 módulos el desarenador tiene 10m de longitud x 2m de ancho y 2.5m de profundidad</td>
<td>No cuenta con un sistema de medición del caudal de entrada</td>
<td>Hacer un refuerzo estructural y controlar el volumen de agua que se capta de la bocatoma.</td>
<td>2</td>
</tr>
<tr>
<td>Conducción</td>
<td>Tubería de PVC de 6" en un tramo de 2 km y un tramo de 5km presenta tubería de PVC de 4" cuenta con 8 viaductos, 12 Válvulas ventosas y no tiene válvulas de purga tiene una edad aproximada de 20 años y su estado actual es bueno</td>
<td>Presenta deterioro de la tubería en algunos de sus tramos</td>
<td>Reforzar la estructura de la tubería en los tramos deteriorados para evitar el desabastecimiento en la planta de tratamiento.</td>
<td>3</td>
</tr>
<tr>
<td>Planta de tratamiento de agua potable-PTAP</td>
<td>Es tipo FIME tiene una válvula para el control del agua, filtro descendente es de concreto reforzado de 7m de longitud 4.10 de ancho x 0.60m de profundidad y un espesor de 0.30m</td>
<td>No posee macromedidor</td>
<td>Instalar macromedidor para el control del volumen de agua que entra a la planta de tratamiento y estimar perdidas de agua.</td>
<td>6</td>
</tr>
<tr>
<td>Filtros lentos</td>
<td>Es de concreto reforzado, redondo con un diámetro de 15m y 1.50m de profundidad</td>
<td>No presenta daños en su estructura</td>
<td>Se recomienda hacer mantenimiento más periódicamente</td>
<td>5</td>
</tr>
<tr>
<td>Tanque de cloración</td>
<td>Es una caseta artesanal y no presenta daño en su estructura.</td>
<td>La cloración no es suficiente, el tanque de cloración no tiene un diseño hidráulico.</td>
<td>Construir un tanque de contacto de cloro y que se implemente cloro gaseoso.</td>
<td>4</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tanque de Almacenamiento</td>
<td>Tiene 2 tanques el primero de 7m de largo x 7m de ancho x 3.70m de fondo y el segundo de 6m de largo x 5m de ancho x 2.50 de fondo con capacidad 80m3 de agua</td>
<td>Su estructura no presenta fallas estructurales y funciona apropiadamente.</td>
<td>Realizar el mantenimiento a los tanques más periódicamente</td>
<td>8</td>
</tr>
<tr>
<td>Red de distribución</td>
<td>Tiene una longitud de 4.5km en un tramo de 2km sale con una tubería de 4 " y es distribuida en Santiago Londoño Vela I y Vela II</td>
<td>No presenta fugas y sus micromedidores funcionan</td>
<td>Instalar equipos para medir presiones y posibles fugas.</td>
<td>9</td>
</tr>
</tbody>
</table>
9 CONCLUSIONES

- La estructura de captación está captando más agua de la necesaria, generando gran impacto ambiental.
- La estructura del desarenador al tener un caudal y una velocidad tan alta el proceso de sedimentación no se está cumpliendo afectando la calidad del agua.
- La planta de tratamiento cumple su función
- La cloración está deficiente evidenciado por coliformes en los resultados de las muestras realizadas en el mes de mayo, junio y agosto del 2013.
- Actualmente el acueducto comunitario no cuenta con un laboratorio propio para la muestra y análisis de calidad de agua. Este servicio es prestado por la Universidad Tecnológica de Pereira y la CARDER, donde se observó que no existe un control permanente en la toma de muestras ni resultados ya hechos al agua. Producien que el sistema cada vez sea más deficiente y poniendo en riesgo la salud de sus usuarios.
10 RECOMENDACIONES

- Las instituciones de vigilancia y control de la prestación del servicio de agua potable deben ampliar actualizar y organizar de una manera integral la base de datos de los acueductos comunitarios de manera que esta sea confiable y permita una mejor evaluación de los sistemas de acueductos, Además de servir como sustento para los proyectos que se realicen en torno al tema hídrico.
- Dejar una copia del trabajo, a la Junta de Acción Comunal Santiago Londoño para que obtengan una base de datos del sistema de acueducto, debido a que no cuentan con información del estado del acueducto.
- Hacer charlas de capacitación con el representante legal del acueducto y los usuarios para motivarlos a realizar un ahorro y uso eficiente del agua para que los consumos sean menores del caudal concesionado.
- Implementar planes y estrategias de Ordenamiento y control; son elementos claves para el reordenamiento territorial y la planeación urbana (desconcentraciones en la gestión del servicio, y usos óptimos de las micro-cuencas abastecedoras.)
11 GLORARIO

Acometida: derivación de la red local de acueducto que llega hasta el registro de rueda en el punto de empate de la instalación interna del inmueble.

Acueducto: Sistema de abastecimiento de agua para una población.

Aducción: componente a través del cual se transporta agua cruda, ya sea a flujo libre o a presión.

Afluentes: Son los ríos secundarios que desaguan en el río principal. Cada afluente tiene su respectiva cuenca, denominada sub-cuenca.

Agua cruda: agua superficial o subterránea en estado natural; es decir que no ha sido sometida a ningún proceso de tratamiento.

Agua potable: agua que por reunir los requisitos organolépticos, físicos, químicos y microbiológicos es apta y aceptable para el consumo humano y cumple con las normas de calidad de agua.

Análisis físico-químico del agua: Pruebas de laboratorio que se efectúan a una muestra para determinar sus características físicas, químicas o ambas.

Análisis microbiológico del agua: Pruebas de laboratorio que se efectúan a una muestra para determinar la presencia o ausencia, tipo y cantidad de microorganismos.

Análisis organoléptico: Se refiere a olor, sabor y percepción visual de sustancias y materiales flotantes y/o suspendidos en el agua.

Almacenamiento: acción destinada a almacenar un determinado volumen de agua para cubrir los picos horarios y la demanda contra incendios.
Azud: es una construcción (barrera), realizada para elevar el nivel del caudal de la Quebrada con el fin de derivar parte de dicho caudal al canal.

Bocatoma: estructura hidráulica que capta el agua desde una fuente superficial y la conduce al sistema de acueducto.

Cámara de succión: depósito de almacenamiento de agua, en el cual se encuentra la tubería de succión.

Canal: conducto descubierto que transporta agua a flujo libre

Captación: conjunto de estructuras necesarias para obtener el agua de una fuente de abastecimiento.

Cauce: Cauce o lecho (tubo de conducción.) m. Lecho de los ríos y arroyos. Conducto descubierto o acequia por donde corren las aguas para riegos u otros usos.

Caudal de diseño: Caudal estimado con el cual se diseñan los equipos, dispositivos y estructuras de un sistema determinado.

Cinara: Instituto de investigación y desarrollo de Agua potable, Saneamiento básico y conservación del recurso Hídrico

CMD: Caudal máximo Diario

Conducción: componente a través del cual se transporta el agua potable, ya sea a flujo libre o a presión.

Coliformes: Bacterias gram negativas de forma alargada capaces de fermentar lactosa con producción de gas a la temperatura de 35 o 37ºC (coliformes totales). Aquellas que tienen las mismas propiedades a la temperatura de 44 o 44.5ºC se denominan coliformes fecales. Se utilizan como indicadores de contaminación biológica.
Cuenca hidrográfica: Se entiende por cuenca hidrográfica o cuenca de drenaje el territorio drenado por un único sistema de drenaje natural, es decir, que drena sus aguas al mar a través de un único río, o que vierte sus aguas a un único lago endorreico. Una cuenca hidrográfica es delimitada por la línea de las cumbres, también llamada divisoría de aguas. El uso de los recursos naturales se regula administrativamente separando el territorio por cuencas hidrográficas.

Cuenca alta: Corresponde a la zona donde nace el río, el cual se desplaza por una gran pendiente

Cuenca media: Es la parte de la cuenca en la cual medidamente hay un equilibrio entre el material sólido que llega traído por la corriente y el material que sale. Visiblemente no hay erosión.

Cuenca baja: Es la parte de la cuenca en la cual el material extraído de la parte alta se deposita en lo que se llama cono de deyección.

Desarenador: componente destinado a la remoción de las arenas y sólidos que están en suspensión en el agua, mediante un proceso de sedimentación mecánica.

Desinfección: proceso físico o químico que permite la eliminación o destrucción de los organismos patógenos, presentes en el agua.

Diámetro nominal: es el número con el cual se conoce comúnmente el diámetro de una tubería, aunque su valor no coincida con el diámetro real interno.

Dotación: cantidad de agua asignada a una población o a un habitante para su consumo en cierto tiempo, expresada en términos de litros por habitante por día o dimensiones equivalentes.
Filtración: Proceso mediante el cual se remueve las partículas suspendidas y coloidales del agua al hacerlas pasar a través de un medio poroso.

FG: Filtración gruesa

Fir: filtración rápido en arena

FLA: Filtración lenta en arena

Filtración lenta: Proceso de filtración a baja velocidad.

Flujo libre: aquel trasporte en el cual el agua presenta una superficie libre donde la presión es igual a la presión atmosférica.

Fuente de abastecimiento de agua: depósito o curso de agua superficial o subterránea, natural o artificial, utilizado en un sistema de suministro de agua.

Medición: sistema destinado a registrar o totalizar la cantidad de agua trasportada por un conducto.

Micromedición: sistema de medición de volumen de agua, destinado a conocer la cantidad de agua consumida en un determinado periodo de tiempo por cada suscriptor de un sistema de acueducto.

Optimización: proceso de diseño y/o construcción para lograr la mejor armonía y compatibilidad entre los componentes de un sistema o incrementar su capacidad o la de sus componentes, aprovechando, al máximo todos los recursos disponibles.

Patógenos: microorganismos que pueden causar enfermedades en otros organismos, ya sea en humanos, animales y plantas.

Periodo de diseño: tiempo para el cual se diseña un sistema o los componentes de este, en el cual su capacidad permite atender la demanda proyectada para este tiempo.
Planta de potabilización: instalaciones necesarias de tratamientos unitarios para purificar el agua de abastecimiento para una población.

Red de distribución: conjunto de tuberías, accesorios y estructuras que conducen el agua desde el tanque de almacenamiento o planta de tratamiento hasta los puntos de consumo.

Rejilla: dispositivo instalado en una captación para impedir el paso de elementos flotantes o sólido grandes.

Sedimentación: proceso en el cual los sólidos suspendidos en el agua se decantan por gravedad.

Tubería: ducto de sección circular para el trasporte de agua

Usuario: persona natural o jurídica que se beneficia con la prestación de un servicio público, bien como propietario del inmueble en donde este se preste, o como receptor directo del servicio. A este último usuario se conoce como Consumidor.

Vida útil: tiempo estimado para la duración de un equipo o componente de un sistema sin que se necesaria la sustitución del mismo: en este tiempo solo se requieren labores de mantenimiento para su adecuado funcionamiento.
12 BIBLIOGRAFÍA

CARDER. (Marzo de 2000). Base ambiental para la formulacion de plan de prevencion de desatres en riesgos de origen natural. Colombia.

Cinara, IRC. (Septiembre de 1999). Filtración en Múltiples etapas. Tecnología innovativa para el tratamiento de agua. Santiago de Cali, Colombia.

ERSAPS. (Noviembre de 3007). Procedimiento y buenas practicas en catastro de redes de agua potable. Tegucigalpa, Republica de Honduras.

Norma técnica Colombiana 813 . (s.f.). NTC ISO 813. *Agua Potable.*

Secretaría Municipal de Salud de Dosquebradas. (2013). Informe Patologías; Población Abastecida; Comparativo Epsas. Dosquebradas, Colombia.

Secretaría Municipal de Salud de Dosquebradas. (Diciembre de 2013). Informes de patología de la ADO. Dosquebradas, Risaralda, Colombia.

Secretaría Municipal de Salud de Dosquebradas; (Mayo de 2013.). Informe Reporte de resultados externos.

13 ANEXO