Gestión Integral del Recurso Hídrico

EVALUACIÓN DE LA VULNERABILIDAD DEL RECURSO HÍDRICO SUBTERRÁNEO DEL MUNICIPIO DE COTA CUNDINAMARCA UTILIZANDO EL MODELO DRASTIC.

ROBER FAYRUTH SOLER PEDREROS Cod. 064091092

Proyecto de Trabajo de Grado para optar el título de Ingeniero Ambiental

Director: Ingeniero Jesús Ernesto Torres Quintero
Magister en Recursos Hidráulicos

Universidad Libre
Facultad de Ingeniería
Departamento de Ingeniería Ambiental
Bogotá, 02 de mayo de 2015
A Dios por ser el dueño de la sabiduría
y a mis padres porque creyeron en mí.
AGRADECIMIENTOS

El autor expresa sus agradecimientos a las siguientes personas y entidades:

M. Sc. JESÚS ERNESTO TORRES QUINTERO docente de la Facultad de Ingeniería Ambiental de la Universidad Libre por su asesoría, dedicación y tiempo en el desarrollo de este trabajo de grado.

UNIVERSIDAD LIBRE por formarme como profesional integro.

SECRETARIA DE MEDIO AMBIENTAL Y DESARROLLO ECONÓMICO DE COTA CUNDINAMARCA y AL INGENIERO WILLIAM HERRERA CUESTA por colaborarme en el suministro de información, acompañamiento y préstamo de equipos para los trabajos de campo realizados.

CORPORACIÓN AUTÓNOMA REGIONAL y A MARTHA PATRICIA AYALA de la dirección de monitoreo, modelamiento y laboratorio ambiental por el suministro de información de pozos del Municipio de Cota, Cundinamarca.

FERNANDA BATISTA, GHILBERT ALONSO, FABIO GARAVITO Y PAULA KECAN por ayudarme en el presente trabajo de grado.
CONTENIDO

LISTA DE TABLAS... 6
LISTA DE FIGURAS ... 8
LISTA DE ANEXOS ... 10
1. RESUMEN... 11
2. INTRODUCCIÓN ... 13
3. DESCRIPCIÓN DEL PROBLEMA ... 14
4. JUSTIFICACIÓN ... 15
5. OBJETIVOS .. 17
 5.1 OBJETIVO GENERAL ... 17
 5.2 OBJETIVOS ESPECÍFICOS ... 17
6. ANTECEDENTES ... 18
7. MARCO REFERENCIAL ... 23
 7.1 MARCO TEÓRICO ... 23
 7.1.1 Desarrollo histórico del agua subterránea ... 23
 7.1.2 Ciclo hidrológico ... 24
 7.1.3 Importancia del agua subterránea .. 25
 7.1.4 Ley de Darcy ... 26
 7.1.5 Clasificación de acuíferos ... 28
 7.1.6 Composición físico-química del agua subterránea .. 34
 7.1.7 Fuentes de contaminación del agua subterránea .. 37
8. MARCO LEGAL ... 39
 8.1 LEGISLACIÓN NACIONAL .. 39
 8.2 LEGISLACIÓN INTERNACIONAL ... 41
9. MÉTODOS .. 42
 9.1 IDENTIFICACIÓN LA CALIDAD DE AGUA ... 42
 9.2 IDENTIFICACIÓN DE LA OFERTA HÍDRICA ... 43
 9.3 DETERMINACIÓN LA DEMANDA HÍDRICA ... 43
 9.3.1 Dotación neta, mínima y máxima ... 43
 9.4 METODOLOGÍA DRASTIC ... 45
 9.4.1 Parámetros de la metodología DRASTIC ... 45
10. DISEÑO METODOLÓGICO ... 55
10.1 ÁREA DE ESTUDIO ... 55
10.2 OFERTA HÍDRICA .. 57
10.3 CALIDAD DEL AGUA SUBTERRÁNEA .. 58
10.4 DEMANDA HÍDRICA DEL MUNICIPIO DE COTA CUNDINAMARCA ... 68
10.4.1 Proyección de la población ... 68
10.5 PRESENTACIÓN DE LA INFORMACIÓN PARA METODOLOGÍA DRASTIC .. 71
10.6 HIDROLOGÍA .. 71
10.6.1 Precipitación ... 71
10.6.2 Temperatura ... 77
10.7 BALANCE HÍDRICO .. 80
10.7.1 Estación APTO GUAYMARAL .. 80
10.7.2 Estación PRIMAVERA LA .. 81
10.8 GEOLOGÍA .. 83
10.8.1 Estratigrafía Municipal ... 83
10.9 INVENTARIO DE PUNTOS DE AGUA .. 85
10.10 ENSAYOS DE INFILTRACIÓN ... 88
10.11 ESTIMACIÓN DE LA PROFUNDIDAD DEL AGUA SUBTERRÁNEA ... 90
10.12 ANÁLISIS Y MAPAS DE VULNERABILIDAD DADOS POR LA METODOLOGÍA DRASTIC ... 93
10.12.1 Profundidad del agua subterránea (D) 93
10.12.2 Recarga neta (R) .. 96
10.12.3 Litología y estructura del acuífero (A) 98
10.12.4 Tipo de suelo (S) ... 100
10.12.5 Topografía o pendiente (T) .. 101
10.12.6 Naturaleza de la zona no saturada (I) 103
10.12.7 Conductividad hidráulica (C) .. 104
10.12.8 Análisis de los resultados de vulnerabilidad intrínseca para la metodología DRASTIC ... 106

CONCLUSIONES ... 113
RECOMENDACIONES .. 115
BIBLIOGRAFÍA .. 117
LISTA DE TABLAS

TABLA 1 Clasificación de la conductividad hidráulica de acuerdo a su rapidez de movimiento. ... 32
TABLA 2 Iones fundamentales ... 35
TABLA 3 Consumo mínimo y máximo de un habitante por día. 44
TABLA 4 Valoración del parámetro D para el método DRASTIC. 46
TABLA 5 Valoración del parámetro R para el método DRASTIC. 47
TABLA 6 Valoración del parámetro A del método DRASTIC. 48
TABLA 7 Valoración del parámetro S del método DRASTIC. 49
TABLA 8 Valoración del parámetro T del método DRASTIC. 50
TABLA 9 Valoración del parámetro I del método DRASTIC 51
TABLA 10 Valoración del parámetro C del método DRASTIC 52
TABLA 11 Factores de ponderación para el método DRASTIC. 53
TABLA 12 Grados de vulnerabilidad del método DRASTIC 54
TABLA 13 Producción de agua de los pozos en Cota, Cundinamarca............. 57
TABLA 16 Datos de calidad del agua subterránea obtenidos mediante el equipo multiparametro Hanna. ... 67
TABLA 17 Estaciones climatológicas situadas alrededor del área de influencia para el análisis hidrológico. ... 72
TABLA 18 INFORMACIÓN BÁSICA DE LOS PUNTOS DE AGUA VISITADOS EN LA ZONA DE ESTUDIO .. 86

TABLA 19 ENSAYOS DE INFILTRACIÓN REALIZADOS EN EL ÁREA DE ESTUDIO, MUNICIPIO DE COTA. .. 88

TABLA 20 NÍVELES ESTÁTICOS DE POZOS UBICADOS EN LA ZONA DE ESTUDIO. 91

TABLA 21 VALORES DRASTIC PARA EL MUNICIPIO DE COTA CUNDINAMARCA. 110

TABLA 22 EVALUACIÓN DE LA VULNERABILIDAD DRASTIC EN EL ÁREA DE ESTUDIO 112
LISTA DE FIGURAS

FIGURA 1 Ciclo Hidrológico .. 24
FIGURA 2 Ley de Darcy; S: superficie de la sección del cilindro; L: longitud de la columna de arena; H: altura del agua. ... 27
FIGURA 3 Variables de evaluación de método DRASTIC. 45
FIGURA 4 Mapa de la ubicación del municipio de Cota-Cundinamarca y los pozos de explotación. .. 56
FIGURA 5 Isolinas de temperatura del agua subterránea de la zona de estudio. ... 61
FIGURA 6 Isolíneas de pH del agua subterránea de la zona de estudio.......... 62
FIGURA 7 Isolíneas DQO del agua subterránea de la zona de estudio 63
FIGURA 8 Isolíneas de hierro del agua subterránea de la zona de estudio 64
FIGURA 9 Isolíneas de sólidos disueltos del agua subterránea de la zona de estudio .. 65
FIGURA 10 Isolíneas de turbidez del agua subterránea del área de estudio..... 66
FIGURA 11 Comparativo Distribución Poblacional 1.985 – 2.020. 69
FIGURA 12 Precipitación media mensual multianual de las 6 estaciones climatológicas situadas alrededor del área de influencia. 73
FIGURA 13 Mapa de isoyetas correspondiente a la precipitación total multianual del área limitada por las estaciones meteorológicas. 76
FIGURA 14 Temperatura media mensual multianual de las 5 estaciones climatológicas... 78
FIGURA 15 MAPA DE ISOTERMAS CORRESPONDIENTE A LA TEMPERATURA MEDIA MULTIANUAL DEL ÁREA LIMITADA POR LAS ESTACIONES METEOROLÓGICAS. 79

FIGURA 16 BALANCE HÍDRICO DE LA ESTACIÓN APTO GUAYMARAL, BOGOTÁ 81

FIGURA 17 BALANCE HÍDRICO DE LA ESTACIÓN PRIMAVERA LA, SUBACHOQUE 82

FIGURA 18 PUNTOS DE AGUA VISITADOS EN LA ZONA DE ESTUDIO 87

FIGURA 19 MAPA DE ENSAYOS DE INFILTRACIÓN REALIZADOS EN EL ÁREA DE ESTUDIO, MUNICIPIO DE COTA. ... 89

FIGURA 20 MAPA DE PUNTOS DE AGUA CON NIVEL ESTÁTICO UBICADOS EN LA ZONA DE ESTUDIO. .. 92

FIGURA 21 Corte hidrogeológico conceptual de la sabana de Bogotá 93

FIGURA 22 MAPA DE LA PROFUNDIDAD DEL AGUA SUBTERRÁNEA DE LA ZONA DE ESTUDIO (D)... 95

FIGURA 23 MAPA DE LA RECARGA DEL AGUA SUBTERRÁNEA DE LA ZONA DE ESTUDIO (R). ... 98

FIGURA 25 MAPA DEL TIPO DE SUELO EN LA ZONA DE ESTUDIO, (S) 101

FIGURA 26 MAPA DE PENDIENTES DE LA ZONA DE ESTUDIO, (T) 102

FIGURA 27 MAPA DE LA NATURALEZA Y DE LAS ZONAS NO SATURADAS DE LA ZONA DE ESTUDIO, (I) ... 104

FIGURA 28 MAPA DE CONDUCTIVIDAD HIDRÁULICA EN LA ZONA DE ESTUDIO, (C)....... 105

FIGURA 29 MAPA DE VULNERABILIDAD DRASTIC PARA EL ÁREA DE ESTUDIO. 111
<table>
<thead>
<tr>
<th>ANEXO</th>
<th>DESCRIPCIÓN</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REGISTRO FOTOGRAFÍCO PARA LAS PRUEBAS DE CALIDAD DE AGUA</td>
<td>122</td>
</tr>
<tr>
<td>2</td>
<td>REGISTRO FOTOGRAFÍCO PARA LA RECOLECCIÓN DE DATOS DE CAUDALES</td>
<td>123</td>
</tr>
<tr>
<td>3</td>
<td>FOTOGRAFÍAS DEL RECORRIDO E INSPECCIÓN DE POZOS DEL ACUEDUCTO Y POZOS PRIVADOS</td>
<td>123</td>
</tr>
<tr>
<td>4</td>
<td>FOTOGRAFÍAS DE LA TOMA Y MEDICIÓN DE NIVELES ESTÁTICOS EN EL ÁREA DE ESTUDIO</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>FOTOGRAFÍAS SOBRE LOS ENSAYOS DE INFILTRACIÓN DENTRO DEL ÁREA DE ESTUDIO</td>
<td>126</td>
</tr>
<tr>
<td>6</td>
<td>CARTA CONVENIO CON LA ALCANDÍA MUNICIPAL DE COTA CUNDINAMARCA</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>CARTA EVIDENCIA DE SOLICITUD INFORMACIÓN A LA CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA – CAR.</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>DATOS SOBRE LAS ESTACIONES METEOROLÓGICAS SUMINISTRADOS POR EL IDEAM Y LA CAR.</td>
<td>131</td>
</tr>
<tr>
<td>9</td>
<td>FORMATOS FUNIAS PARA EL SEGUIMIENTO DE ESTRUCTURAS DE AGUA SUBTERRÁNEA VISITADOS</td>
<td>132</td>
</tr>
</tbody>
</table>
1. RESUMEN

En el presente documento se identificó que los cuatro pozos del acueducto donde se explota agua subterránea para el Municipio de Cota Cundinamarca ofrecen al día 3’715,200L, estos datos se obtuvieron gracias a los trabajos de campos que se hicieron e información suministrada por el acueducto La Moya y las personas trabajadoras en la planta de tratamiento Cetime. De igual forma, gracias al estudio de calidad de agua realizado por la Universidad de la Salle en el 2013, se logró hacer mapas donde se muestra el comportamiento de los parámetros en toda el área de estudio. Así mismo, con la respectiva información obtenida mediante el DANE, se logró identificar el número de habitantes que existen actualmente en la parte rural y urbana del Municipio de Cota, gracias a esto y con ayuda del RAS 2000, se identificó la demanda hídrica del casco urbano del Municipio el cual es abastecida por el acueducto. Todo lo anterior mencionado se hizo con el fin de tener una visión clara de la importancia de proteger el recurso hídrico subterráneo del Municipio.

Por otro lado, se generaron mapas de vulnerabilidad intrínseca para el acuífero del Municipio de Cota Cundinamarca, mediante la metodología DRASTIC conforme a cada una de las variables y utilizando algebra de mapas se generó cada mapa por medio del software ArcGis 10.1. Se obtuvieron valores correspondientes al índice de vulnerabilidad intrínseca para la metodología DRASTIC, con resultados comprendidos entre los valore posibles (23 a 230), divididos en cinco intervalos de vulnerabilidad (muy bajo, bajo, moderado, alto y muy alto). En el área total de la
zona de estudio que corresponde a 53.42 km², se tiene que el 60.9% presenta una vulnerabilidad moderada y el 39.1% una vulnerabilidad alta. En vista general, se identifica que la zona de estudio presenta múltiples fuentes de contaminación, debido a la agricultura, ganadería, industrias y urbanización, este documento contribuye como una base a futuras investigaciones dirigidas al diagnóstico del acuífero.
2. INTRODUCCIÓN

El aprovechamiento del agua subterránea es un tema el cual se ha tratado por muchas décadas, recuerdo que hace unos años escuchaba sobre el tema pero no comprendía como se podía obtener agua del subsuelo, además, se decía que en unos 30 años se empezaría a ver la escases del agua superficial debido al mal uso que se le daba; para mí ese tiempo es muy lejano y creía que nunca llegaría a verlo, así que no tome mucha importancia puesto que le daba mal uso al agua de mi casa. No obstante, han pasado muy pocos años y he visto que esta situación es palpable, que en la gran mayoría de los lugares del mundo dependen del recurso hídrico subterráneo.

Es por ello que se ha diseñado diferentes metodologías para evaluar la vulnerabilidad del agua subterránea, puede ser por: contaminación, sobre extracción, entre otros aspectos.

En el siguiente trabajo se expone con cifras reales, la oferta del agua subterránea, la calidad y la demanda, con el fin de conocer la importancia de protegerla, además, se aplicó la metodología DRASTIC la cual evalúa la vulnerabilidad intrínseca de los acuíferos del Municipio de Cota – Cundinamarca.
3. DESCRIPCIÓN DEL PROBLEMA

El recurso hídrico subterráneo es importante porque tiene una mejor calidad comparada con el agua superficial y se puede extraer en cantidades económicamente aprovechables. De igual forma, se reconoce como alternativa de aprovechamiento en cuencas con limitaciones al sustento con agua superficial (Rojas Ortiz & Serrano Rincon, 2007), además, (IDEAM, 2010) afirma que existen en el país 5.848 km3 de agua subterránea que pueden ser incorporadas al desarrollo del país.

Por otro lado, el flujo de agua subterránea y la infiltración de contaminantes no se pueden observar ni medir fácilmente, no todos los tipos de suelos ni las condiciones hidrogeológicas son igualmente efectivos para amortiguar los contaminantes.

Después de las consideraciones anteriores, surge la necesidad de conocer la forma en que responde el medio que protege las aguas subterráneas en zonas que son focos de contaminación; y es por ello que se plantea realizar una evaluación de la vulnerabilidad del recurso hídrico subterráneo en el casco urbano y sus alrededores del municipio de Cota, Cundinamarca, además existe poca información técnica sobre la hidrogeoquímica del agua subterránea que es fuente de agua potable para la población.
4. JUSTIFICACIÓN

El presente proyecto de trabajo de grado pretende recopilar la información básica acerca de algunos pozos de agua subterráneo que abastecen de agua potable a Cota, debido a que representa un recurso importante para el desarrollo socio-económico del municipio; convirtiéndose en la principal fuente de abastecimiento de agua potable para la población.

En los alrededores del casco Urbano de Cota, el importante recurso es utilizado por asentamientos humanos y por industrias que lo utilizan en los procesos y que al mismo tiempo pueden ser posibles causantes de su contaminación.

Debido a la problemática mencionada anteriormente, se necesita información que sea generada y utilizada como herramienta a entidades como: LA ASOCIACIÓN DE USUARIOS DEL ACUEDUCTO DE LA VEREDA DE ROZO DE COTA y EMSERCOTA S.A, que permita realizar una buena gestión del recurso hídrico subterráneo, de todo esto se desprende el término de vulnerabilidad de las aguas subterráneas, por lo tanto facilita el manejo de los recursos hídricos, contando con herramientas prácticas que permiten conocer en cierta forma el estado del recurso hídrico y fijar las aspectos que deben tenerse en cuenta para su asistencia ambiental.

(Oswald Spring, 2003) Afirma que: “El método de sobre posición DRASTIC, también conocido como aproximación DRASTIC, es el producto del consenso de más de 1.200 hidrogeólogos Norteamericanos, los cuales definieron los parámetros que
deberían considerarse y el peso o importancia que tenía entre sí, (...). Es uno de los métodos más comunes." (pág. 230).
5. OBJETIVOS

5.1 OBJETIVO GENERAL
Evaluar la vulnerabilidad del recurso hídrico subterráneo del Municipio de Cota Cundinamarca utilizando el modelo DRASTIC.

5.2 OBJETIVOS ESPECÍFICOS
- Identificar la oferta hídrica y calidad del agua subterránea de cada uno de los pozos que abastecen agua potable al municipio de Cota, Cundinamarca.
- Determinar la demanda de agua potable de la población correspondiente al casco urbano de Cota, Cundinamarca.
- Analizar los resultados de vulnerabilidad del agua subterránea del municipio de Cota Cundinamarca, obtenidos mediante el modelo DRASTIC.
6. ANTECEDENTES

A escala global unos de los grandes proyectos que se han hecho para analizar el estado del agua, fue realizado por las Naciones Unidas a través de un informe que se presentó sobre el desarrollo del recurso hídrico en el mundo, dicho informe se trató de un estudio exhaustivo que ofreció un panorama global sobre el estado del recurso del agua dulce del planeta, además, el estudio aportó importante herramientas para los responsables de las tomas de decisiones para la implementación del uso sostenible de los recursos hídricos, del mismo modo, el informe aportó guías de mejores prácticas, así como análisis teóricos en profundidad con el fin de estimular ideas y acciones que mejoren la administración en el sector del agua (UNESCO, 1992).

El recurso hídrico subterráneo, durante las últimas décadas ha jugado un papel muy importante en el desarrollo de la humanidad, lo que implica una alta demanda y al mismo tiempo se hace vulnerable a la contaminación (EPA, 1996). Para entender la dinámica de la vulnerabilidad, es necesario implementar un método de estudio y posteriormente generar mapas que expongan la situación del recurso hídrico (Instituto Tecnológico GeoMinero de España, 1999). Un ejemplo de estos estudios fue realizado por (Franco, Llanos, & Gárfias, 2002) que mediante un análisis de vulnerabilidad intrínseca aplicando la metodología DRASTIC en México, afirman que esta metodología permitió generar mapas de vulnerabilidad más
confiables y a la vez suministra información complementaria para el ordenamiento del área de estudio y complementar bases de datos de información general del país. Este tipo de estudios se han realizado recientemente en México y Uruguay enfocados en la contaminación del agua subterránea. Un estudio realizado en Valle de Etla, Oaxaca, por (Belmonte & Campos), determinó la vulnerabilidad mediante la realización de sondeos eléctricos verticales mediante el dispositivo Schlumberger y de sondeos inductivos electromagnéticos (EM-34) permitió definir cuatro parámetros de la técnica SINTACS.

En Paysandú, Uruguay (Montaño, Gagliardi, Vidal, Montaño, & Lucena, 2004) utilizaron los métodos GOD y DRASTIC para evaluar la vulnerabilidad de los acuíferos porosos alrededor de la ciudad de Paysandú, donde encontraron que en el primer método se lograron identificar tres zonas, cuya distribución en planta de las tres situaciones geológicas consideradas: la zona más vulnerable en donde aflora la formación mercedes, la situación interinada se da cuando aflora la formación Asencio y la zona menos vulnerable se presenta cuando aflora la formación Fray Bentos.

También encontraron que en el segundo método también se obtuvieron tres zonas vulnerables distintas: Muy baja, baja, y moderada, donde geográficamente los resultados son similares al método GOD.

En este estudio se destaca la importancia fundamental de la formación de Fray Bentos en cuanto a la protección de acuíferos, debido al desarrollo de suelos con horizontes A y B que presenta una gran cantidad de intercambio iónico.
Así mismo, (Mérida & Tores, 2009), proporcionaron una herramienta con un sustento científico que permitió identificar la mayor vulnerabilidad de la franja ubicada en las proximidades del límite entre el acuífero libre y el acuífero semi-confinado, al este de la ciudad de San Juan, además, identificaron que la principal fuente de contaminación del agua subterránea son las industrias, donde encontraron que 21 industrias presentan un grado de contaminación alto y tres con un grado de riesgo extremo, dado a esto es donde surge la necesidad de intensificar los controles de vertimientos con el fin de evitar contaminar los acuíferos.

En algunos casos los rellenos sanitarios o antiguos botaderos son fuentes puntuales de contaminación de acuíferos. (Mena López & Montes García, 2010), plantea una evaluación de la vulnerabilidad aplicada en un antiguo botadero de Mariona, San Salvador, donde lograron identificar que algunos de los parámetros eran constantes en toda la zona, variando únicamente la profundidad al nivel freático y que la mayoría de los valores pertenecían a un solo rango de evaluación, además, le dieron un alto nivel de importancia a los mapas de vulnerabilidad ya que ayudan a identificar sitios específicos mostrando un grado de vulnerabilidad.

En Colombia se han realizado varios estudios de Vulnerabilidad de las aguas subterráneas donde se han determinado zonas críticas. Algunos de ellos son (Rueda G & Batancur V, 2006), que hicieron un estudio de vulnerabilidad a la única fuente de agua potable en el Bajo Cauca Antioqueño, donde se aplicaron diez metodologías, seis intrínsecas y cuatro específicas, estableciéndose que el grupo de metodologías DRASTIC, Ekv, AVI, y DRASTIC-P en donde se reflejó zonas que
pueden ser impactadas natural o entrópicamente y que dentro de ellas la de mayor ajuste es el DRASTIC-P.

Del mismo modo, (Ríos Rojas & Vélez Otálvaro, 2008), estudiaron la vulnerabilidad de la zona sur del Valle del Cauca y encontraron que determinar la vulnerabilidad puede ser muy ventajoso, pues es la única manera de asegurar que se alcance de forma objetiva el equilibrio entre el desarrollo económico y la protección del acuífero, además, encontraron que la presencia de arcillas no saturadas no son suficiente para la protección del acuífero.

De igual forma, en este mismo periodo de tiempo la (CAR, 2008), en compañía de colaboradores de todo el país, desarrollaron un plan de manejo ambiental de agua subterránea en la sabana de Bogotá y las zonas críticas, donde determinaron, en general, la presencia de una sobre explotación del aguas subterráneas para el uso doméstico e industrial lo cual ha provocado un hundimiento de algunas partes de dicha zona, del mismo modo, entroncaron que la principal fuente contaminación es de tipo antrópica y que se debe tener en cuenta este tipo de estudios y de situaciones en el progreso de la región.

Adicionalmente, el (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010), en el recuento de los estudios realizados para el agua subterránea, propone metodologías para la evaluación de la vulnerabilidad intrínseca de los acuíferos a la contaminación, en donde recomiendan utilizar diferentes métodos con el fin de obtener mejores resultados, por otra parte, afirma que es me mayor orientación
utilizar mapas de escala nacionales o regionales a escala menores a 1:100.00 y para toma de decisiones cuando son evaluadas a escalada detallada utilizar escalas mayores a 1:50.000.
7. MARCO REFERENCIAL

7.1 MARCO TEÓRICO

7.1.1 Desarrollo histórico del agua subterránea

Los grandes pensadores Romanos y griegos se dedicaron a establecer teorías extraordinarias para explicar el origen de los manantiales y el agua subterránea. Se pensaba que era casi imposible que el agua de los manantiales fuera originaria de la lluvia; entonces, Vitrubio fue el único que pudo explicar que la lluvia caía sobre las montañas y penetraba los estratos rocosos resultando en la base de las montañas en forma de corrientes subterráneas.

Otros científicos importantes como Kepler, al principio del siglo XVII mantenían teorías absurdas sobre el agua subterránea, a pesar de que aproximadamente un siglo antes, el Francés Bernardo de Palissy, en 1580, expuso sobre la teoría de la infiltración. No obstante, fue hasta la segunda mitad del siglo XVII, cuando Perrault estableció que la precipitación de un río era seis veces mayor que el caudal del mismo, esto contribuyó a darle un verdadero carácter científico a la hidrología en general, incluyendo una explicación detallada del agua subterránea. Después de un tiempo, el reconocido astrónomo Inglés Halley efectuó mediciones sobre la evaporación oceánica.

De esta manera quedaron establecidas las bases de lo que hoy se le conoce como ciclo hidrológico.
7.1.2 Ciclo hidrológico

“La energía solar y la gravedad terrestre son fuerzas que actúan para mantener en agua en la naturaleza en un contante proceso de evaporación, precipitación, infiltración, almacenamiento, escurrimiento superficial, (...), lo cual se le conoce como ciclo hidrológico” (Pérez Franco, 1995, pág. 7). En la Figura 1, se expone un esquema simplificado del ciclo hidrológico, donde su compresión no necesita de mayor explicación.

Figura 1 Ciclo Hidrológico

Fuente: (Pérez Franco, 1995, pág. 8)
7.1.3 Importancia del agua subterránea

Una buena cultura es aquella que nos conduce a cuidar y utilizar correctamente del agua que disponemos, sin embargo una gran cantidad de seres humanos ignoran la importancia de mantener el agua libre de contaminantes, ya sean manantiales, pozo o mantos freáticos que hoy conocemos como agua subterránea.

Además, el agua subterránea es una fuente de abastecimiento en el mundo, las industrias, el regadío, para abastecimiento de poblaciones y otros usos. La facilidad con la que se puede captar, mediante obras relativamente poco costosas, y la posibilidad de poderla aprovechar en muchos casos, si necesidad de someterla a tratamientos, hacen del agua subterránea una fuente a abastecimiento de rápida utilización y con un costo considerablemente bajo (Pérez Franco, 1995, pág. 14).

En el mismo orden de ideas, es necesario recordar el que el agua subterránea es un recurso renovable, pero no limitado. Según (Castany, 1967) el volumen total del agua dulce en el mundo, que se encuentra en lagos, cursos de aguas y en la zona saturada, es en promedio de 8 120 000 km³, de los cuales el 10% que es aproximadamente 800 000 km³ corresponden a agua subterránea. (Price, 2003) Afirma: “En términos simples de cantidad, el agua subterránea es consecuentemente de gran importancia. Pero la cantidad no lo es todo, y desde el punto de vista del abastecimiento, el agua subterránea tiene otras ventajas sobre el agua superficial. Un depósito superficial generalmente debe ser embalsado en algún momento, (...). El agua subterránea puede a menudo
extraerse donde y cuando se necesita por medio de pozos que se perforan y construyen en los lugares deseados” (pág. 8).

7.1.4 Ley de Darcy

El ingeniero Herry Darcy nació en Francia en el año de 1856 en la ciudad de Dijon.

“Fue el encargado del estudio de la red de abastecimiento de la ciudad, además se dice que él también debía diseñar filtros de arena para purificar el agua, como consecuencia de lo anterior se interesó por los factores que influían en el flujo del agua a través de los materiales arenosos, y presento el resultado de sus trabajos como un apéndice a su informe de la red de distribución. El apéndice que Darcy presento ha sido la base de todos los estudios físico-matemáticos sobre el flujo del agua subterránea” (Mena Lopez y Montes Garcia, 2010, pág. 31)

(Pimienta, 1980) Afirma: “Darcy había establecido que la velocidad de circulación del agua a través del cilindros llenos de arena calibrada era directamente proporcional a la carga e inversamente proporcional a la distancia recorrida” (pág. 29)

Sea un cilindro de longitud l, sección s, y una altura de agua h (Figura 2). En un medio homogéneo e isótropo, el caudal q viene dado por la fórmula:

$$q = k \frac{s}{l} \frac{h + l}{l}$$
Se expresa generalmente en litros/seg por m², pero se puede también definir el caudal de un pozo o sondeo de m³/h.

Figura 2 Ley de Darcy; s: superficie de la sección del cilindro; l: longitud de la columna de arena; h: altura del agua.

![Diagrama de la Ley de Darcy](image)

Fuente: (Pimienta, 1980, pág. 30)

K es el coeficiente de permeabilidad o de Darcy y caracteriza el terreno atravesado. Se expresa como la medida de una velocidad, por relación de la distancia recorrida y el tiempo empleado. Generalmente, también se expresa en litros/seg por m², (Pimienta, 1980) Afirma:

"Como la permeabilidad depende de la viscosidad del agua, aquélla es función de la temperatura. Cuando la temperatura aumenta el valor del coeficiente *k* crece al mismo tiempo que disminuye la viscosidad. Estas variaciones son despreciables en la superficie de los terrenos donde la temperatura es relativamente constante a lo largo del año. Pero la temperatura se eleva poco más o menos un grado centigrado cada 30m; la
7.1.5 Clasificación de acuíferos

Se entiende como acuífero a la parte saturada del perfil del suelo y tienen la facilidad de transmitir y almacenar agua.

El perfil del suelo está constituido de sedimentos no consolidados o débilmente consolidados, estructurados o depositados horizontalmente, en capas definidas o no definidas. Una de las características más frecuentes de ciertas capas es la de ser de poco espesor en relación con su extensión horizontal.

Según fines hidrogeológicos estas capas se clasifican en:

- Permeables
- Semipermeables
- Impermeables

Es necesario definir cada una de estas capas ya que es importante saber su composición y su función.

Capa permeable

Se llama capa permeable cuando sus propiedades transitorias de agua son favorables, o que al menos sean favorables en comparación con los estratos inferiores o superiores. En una capa de este tipo, la resistencia al flujo vertical es pequeña y puede ser despreciada, teniendo en cuenta las pérdidas de energía a causa del flujo horizontal (Villón Béjar, 2006, pág. 66)
Capa semipermeable

Se considera semipermeable si sus propiedades transmisoras de agua son bajas. El flujo horizontal a lo largo de una distancia es despreciable, pero el flujo vertical no se puede despreciar, debido a que la resistencia hidráulica del flujo es pequeña y el espesor también pequeño. Por lo tanto, se considera el flujo de agua esencialmente vertical (Villón Béjar, 2006, pág. 66).

Capa impermeable

Se considera impermeable si sus propiedades transmisoras de agua son muy bajas que solamente fluyen a través de ella, sea vertical u horizontal, cantidades de agua despreciables. Las capas completamente impermeables son poco frecuentes cerca de la superficie del suelo, pero a mayor profundidad son comunes, donde la compactación, cementación y otro procesos de consolidación han tenido lugar (Villón Béjar, 2006, pág. 66).

A continuación se mencionaran los tipos de acuíferos presentes en las capas nombradas anteriormente:

- Acuíferos libres o freáticos
- Acuíferos confinados
- Acuíferos semi-confinados

Acuíferos libres o freáticos: Son aquellos que presentan una superficie libre a agua que está en contacto directo con la atmósfera, sometida por consiguiente a la presión atmosférica denominándose como superficie freática o tabla de agua (Vélez Otálvaro, Hidáulica de aguas subterráneas, 1999, pág. 74)
Acuíferos confinados: Un acuífero confinado es una formación permeable completamente saturada de agua, y donde sus límites superiores e inferiores son capas impermeables. La presión del agua es mayor que la atmosfera, es por ello que el agua en pozos que penetran en tales acuíferos, permaneces por encima de nivel superior de las capas permeables (Villón Béjar, 2006, pág. 67)

Acuíferos semi-confinados: son los que se encuentra totalmente saturados de agua y están limitados ya sea por su base o por el techo, o por ambos, por una capa o formación semipermeable (Vélez Otálvaro, Hidáulica de aguas subterráneas, 1999, pág. 75). Esta situación permite que el flujo pueda efectuarse en dirección de la diferencia de niveles piezométricos.

Los parámetros a estudiar de los acuíferos son resumidamente: La porosidad, la permeabilidad, transmisividad y el coeficiente de almacenamiento.

- **Porosidad**
La cantidad de agua que se puede almacenar en un acuífero depende de la porosidad del suelo o de la roca que lo aguarda. La porosidad (η) se define en la siguiente fórmula:

$$
\text{porosidad (}\eta\text{)} = \frac{\text{Volumen de huecos}}{\text{Volumen Total}}
$$

La porosidad indica la capacidad de retener agua de una formación geológica, pero esto no quiere decir que sea un buen indicador de la cantidad total de agua que
puede extraerse de ella. Una gran parte de esta quedará retenida en la superficie de las rocas, en pequeñas grietas y aberturas.

En la porosidad influyen varios factores, entre los que se puede distinguir los siguientes:

a. Forma de los granos, que determina la forma y dimensiones de los poros.

b. Disposición de los granos.

c. Tamaño del grano.

Cuando se habla de porosidad también es importante mencionar la porosidad efectiva, donde esta representa más que una porción pequeña de la porosidad total, y se define como el volumen de agua contenido en una roca, liberada por la acción de la gravedad y que se denomina V_{al} (volumen de agua libre). La porosidad efectiva se define en la siguiente ecuación.

$$\eta_{e} = \frac{V_{al}}{V_{tot}} \times 100$$

Dónde:

$D_{e} = $ Porosidad efectiva

$V_{al} = $ Volumen del agua libre

$V_{tot} = $ Volumen total
• **Conductividad Hídrica**

La conductividad hídrica (K), es una información básica para determinar la separación entre drenes, así como la cuantía de aportaciones freáticas que constituyen un problema para las zonas que las reciben.

La conductividad hídrica es igual al factor K de la ecuación de Darcy, entonces, la misma es aplicable para calcular la velocidad de movimiento en la casi totalidad de condiciones de drenaje (Soubannier, 1985). La ecuación de Darcy es igual a:

$$v = Ki$$

$v =$ velocidad efectiva de la corriente
$i =$ gradiente hidráulica
$K =$ factor de proporcionalidad

La conductividad hidráulica es una característica que depende de la porosidad del suelo, así como la temperatura y salinidad del agua.

Tabla 1 Clasificación de la conductividad hidráulica de acuerdo a su rapidez de movimiento.

<table>
<thead>
<tr>
<th>Clase</th>
<th>Conductividad hidráulica cm./hora</th>
<th>Conductividad hidráulica metros/hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremadamente lenta</td>
<td>menos de 0.125</td>
<td>menos de 0.03</td>
</tr>
<tr>
<td>Muy lenta</td>
<td>0.125 - 0.50</td>
<td>0.03 - 0.12</td>
</tr>
<tr>
<td>Lenta</td>
<td>0.50 - 2.00</td>
<td>0.12 - 0.48</td>
</tr>
<tr>
<td>Moderada</td>
<td>2.00 - 6.25</td>
<td>0.48 - 1.50</td>
</tr>
<tr>
<td>Rápida</td>
<td>6.25 - 12.5</td>
<td>1.50 - 3.12</td>
</tr>
<tr>
<td>Muy rápida</td>
<td>12.50 - 25.0</td>
<td>3.12 - 6.00</td>
</tr>
<tr>
<td>Extremadamente rápida</td>
<td>más de 25.00</td>
<td>más de 6.00</td>
</tr>
</tbody>
</table>

Fuente: (Soubannier, 1985)
• **Transmisividad**

Theis en 1935, introdujo este concepto lo cual se define como el caudal que se infiltra a través de una franja vertical de terreno, de ancho unitario y de altura igual a la de manto permeable saturado bajo un gradiente unitario a una temperatura fija determinada; es otras palabras, es un producto del espesor saturado del acuífero y la conductividad hidráulica (Custodio & Llamas, 2001). Este coeficiente es representado por la letra T y puede determinarse mediante ensayos de bombeo. Cuando el coeficiente es introducido a la ecuación de Darcy, el flujo a través de cualquier sección transversal vertical de acuífero viene expresado por (Inc, 1975):

\[Q = TIW \]

Donde I es el gradiente hidráulico y W es el espesor del acuífero a través del cual tiene lugar el flujo.

• **Coeficiente de almacenamiento**

Hay dos tipos de acuíferos desde el punto de vista de la presión hidrostática del agua encerrada en los mismos: el acuífero freático, que tiene el techo a la presión atmosférica, y el acuífero confinado, que tiene en su techo una capa confinante. Si disminuye la presión hidrostática de un acuífero confinado, por ejemplo por la extracción de agua subterránea, aumenta el peso a soportar por el acuífero y la presión que resulta, expulsa cierta cantidad de agua del acuífero. Al mismo tiempo, el descenso de la presión produce una pequeña expansión y consiguiente liberación de agua. La capacidad de producir agua de un acuífero cautivo se expone mediante el coeficiente de almacenamiento.
El coeficiente de almacenamiento se define como el volumen de agua que puede ser liberado por un prisma vertical del acuífero de sección igual a la unidad y altura igual ala del acuífero saturado si se produce un descenso unidad del nivel piezométrico o de carga hidráulica (Custodio & Llamas, 2001) y se define como se muestra es la siguiente ecuación.

\[S = g \cdot d \cdot \eta_e \cdot \beta_{liq} + \beta_{roca} \]

Donde, \(S \) es el coeficiente de almacenamiento y no tiene dimensiones, \(g \) es la aceleración de la gravedad, \(d \) es el espesor del acuífero, \(\eta_e \) es la porosidad eficaz; \(\beta_{liq} \) y \(\beta_{roca} \) son respectivamente los coeficientes de compresibilidad del agua y de la roca. En acuíferos cautivos entran en juego efectos mecánicos de compresión del terreno o de la propia agua (Mena López & Montes García, 2010).

7.1.6 Composición físico-química del agua subterránea

El agua subterránea, al igual como el agua superficial, posee unas características físicas y químicas que la distinguen y la hace diferente al agua superficial, donde algunos elementos se presentan disueltos en mayores concentraciones.

- **Composición química**

En el agua subterránea natural, casi todas las sustancias disueltas se encuentran en estado iónico. Los iones fundamentales que se encuentran en el agua subterránea se describen en la siguiente tabla.
Los gases fundamentales que se deben considerar tales como el anhídrido carbónico (CO$_2$) y el oxígeno disuelto (O$_2$), aunque no son frecuentes que se analicen en las aguas subterráneas (Custodio & Llamas, 2001).

- **Composición física**

Entre las características físicas más importantes del agua subterránea encontramos:

- **Temperatura:** Las aguas subterráneas tienen una temperatura muy poco variable, y responde a la medida anual de las temperaturas atmosféricas del lugar, incrementando en el producto de la profundidad por el gradiente geométrico (1 °C cada 33 m en medida) (Custodio & Llamas, 2001).

- **Conductividad y resistividad, C y ρ:** La conductividad crece con la temperatura y es preciso tomar una temperatura de referencia; que puede ser 18 °C o 25 °C. Crece el 2%/°C al crecer la temperatura (Custodio & Llamas, 2001).
- Densidad \(q \): Varía con la temperatura y crece con la salinidad. Puede servir para estimar el contenido en sales minerales de las salmueras (Custodio & Llamas, 2001).

- Color: En general se origina por materia orgánica de formaciones carbonosas o suelos vegetales.

- Turbidez o Turbiedad: Es originado por el contenido de matarías coloidales y la materia en suspensión muy fina y difícil de filtrar.

- Materia en suspensión: En aguas subterráneas la materia en suspensión casi siempre en generada por mala captación donde se producen arrastres.

- Sabor: En las aguas subterráneas el sabor es generado por las diferentes concentraciones de algunos compuestos que están presentes, los cuales generan un gusto salado, amargo, picante, etc.

Entre las características químicas y fisicoquímicas, el agua subterránea presenta una concentración de hidrogeniones pH, también presenta residuos secos y totales de sales disueltas Rs y Sd, alcalinidades TAC y Ta, Acidez, Dureza total, permanente y temporal o carbonatada (Dt, Dp, Dc), Demanda química de oxígeno (DQO), demanda bioquímica de oxígeno (DBO) y demanda de cloro y break-point (Custodio & Llamas, 2001).
7.1.7 Fuentes de contaminación del agua subterránea

Durante muchos años, los estudios hidrogeológicos se han enfocado en el estudio de la calidad del agua subterránea, donde se busca las mejores alternativas de poder evitarlos o encontrar metodologías que ayuden a contra restar los contaminantes presentes en el acuífero que por lo general son causados por las actividades humanas. Dentro de las principales fuentes de contaminaciones podemos encontrar dos tipos:

- Fuentes de contaminación por causas naturales.
- Fuentes de contaminación por actividad humana.

La contaminación causada por fuentes naturales son sustancias químicas como el flúor y el arsénico que son originados a partir de la disolución de partículas de origen volcánico durante muchos años.

Cuando se hace referencia al término contaminación de aguas subterráneas en general se en tiende que es generada por las actividades humanas. Dentro de las principales actividades humanas tenemos:

- Residuos sólidos urbanos (RSU)
- Aguas residuales.
- Actividad agrícola.
- Ganadería.
- Actividades industriales y minera
- Entre otras.
Las principales vías por la que el contaminante llega al acuífero y contamina el agua subterránea tenemos:

- Infiltración de sustancias dejadas en la superficie como por ejemplo basureros, pesticidas, abonos entre otros.
- Filtración de sustancias depositadas o enterradas, o disolución de estas por las aguas subterráneas.
- Filtración desde un río influente.
- Derrames accidentales de depósitos o conducciones que estén en la parte superficial o enterrada.
- Desde la superficie a través de conducciones abandonadas o en mal estado.
- Desde otro acuífero cuando se hace captación de agua subterránea.

Por las vías mencionadas anteriormente los contaminantes alcanzan la superficie freática más superficial y después se disuelven en el acuífero que posteriormente es trasportado por el flujo del agua subterránea.
8. MARCO LEGAL

8.1 LEGISLACIÓN NACIONAL

Dentro de la legislación Nacional que se referencia al uso y aprovechamiento de los recursos hídricos y calidad de agua para consumo en general, se encuentra la siguiente normatividad:

2. Decreto 1640 de 2012: “Por medio del cual se reglamentan los instrumentos para la planificación, ordenación y manejo de las cuencas hidrográficas y acuíferos, y se dictan otras disposiciones” (MMADS, 2012).
3. Decreto 1575 de 2007: “Por el cual se establece el Sistema para la Protección y Control de la calidad del agua para consumo humano” (MPS, 2007).
4. Decreto 3930 de 2010: Por el cual se reglamenta parcialmente el Título I de la Ley 9ª de 1979, así como el Capítulo II del Título VI -Parte III- Libro II del Decreto-ley 2811 de 1974 en cuanto a usos del agua y residuos líquidos y se dictan otras disposiciones (MAVDT, 2010)
6. Decreto 1443 de 2004: “Tiene relación con la prevención y control de la contaminación ambiental por el manejo de plaguicidas y desechos o
residuos peligrosos provenientes de los mismos y se toman otras determinaciones" (MAVDT, 2004).

7. Decreto 475 de 1998: “Por el cual se expiden normas técnicas de calidad del agua potable” (Presidencia de la República, 1998)

9. Ley 23 de 1973: “Plantea la necesidad de proteger los recursos naturales renovables, fija límites mínimos de contaminación y establece sanciones por violación de las normas. Se faculta al Presidente de la República para expedir el Código de los Recursos Naturales y de Protección al Medio Ambiente” (Congreso de Colombia, 1973)

10. Resolución 872 de 2006: “Por la cual se establece la metodología para el cálculo del índice de escasez para aguas subterráneas a que se refiere el Decreto 155 de 2004 y se adoptan otras disposiciones” (MAVDT, 2006)

8.2 LEGISLACIÓN INTERNACIONAL

En el marco de la legislación Internacional se encuentra algunas leyes las cuales adoptan medidas sobre la protección del agua subterránea y mencionan algunos parámetros sobre la importancia de este vital recurso.

➢ Guía para la protección de las aguas subterráneas

Esta guía describe la importancia del agua subterránea a nivel mundial, además, menciona parámetros que debe tener el agua para consumo humano, también hace referencia a las principales fuentes de contaminación y aporta ideas para su protección (EPA, 1996).
9. MÉTODOS

En el presente proyecto de grado, se pretende evaluar la vulnerabilidad del recurso hídrico subterráneo en el casco urbano del Municipio de Cota Cundinamarca, con el fin de identificar el grado de disposición a la contaminación, entonces, es necesario identificar la oferta y la calidad de agua de los cuatro pozos de explotación, además, determinar la demanda hídrica de la población correspondiente al casco urbano de Cota, y por último analizar los resultados obtenidos por medio de la metodología DRASTIC.

9.1 IDENTIFICACIÓN DE LA CALIDAD DE AGUA

Con la respectiva información de los cuatro pozos de explotación, que será suministrada por las entidades encargadas del acueducto de Cota, se tendrán en cuenta unos parámetros requeridos para identificar la calidad del agua de acuerdo al Decreto 3930 del 2010, en su capítulo III, Artículo 7. El agua para consumo humano, antes de su tratamiento, se debe por lo menos identificar los siguientes parámetros.

- **DBO₅**: Demanda bioquímica de oxígeno a cinco (5) días.
- **DQO**: Demanda química de oxígeno.
- **SS**: Sólidos suspendidos.
- **pH**: Potencial del ion hidronio, H⁺
- **T**: Temperatura.
- **OD**: Oxígeno disuelto.
9.2 IDENTIFICACIÓN DE LA OFERTA HÍDRICA

Para el cálculo de la oferta hídrica se tendrá en cuenta los caudales de los cuatro pozos de abastecen de agua potable al municipio de Cota-Cundinamarca, los cuales serán suministrados por las entidades encargadas del manejo del acueducto.

9.3 DETERMINACIÓN LA DEMANDA HÍDRICA

En el marco del Estudio Nacional de Agua (ENA) 2010, se define como demanda hídrica, a la extracción de agua de un sistema natural utilizada para suplir las necesidades o requerimientos del consumo humano, la producción sectorial y las demandas elementales de los ecosistemas no antrópicos. Dentro del proceso de determinación se debe tener en cuenta el consumo neto según el número de la población como:

9.3.1 Dotación neta, mínima y máxima

Según el (Reglamento técnico del Sector de Agua Potable y Saneamiento Básico, 2000), es la cantidad mínima de agua requerida por un habitante para satisfacer las necesidades básicas sin considerar las pérdidas que ocurren en el sistema de acueducto. En la Tabla 3 se expone los valores máximos y mínimos que necesita un habitante.
Tabla 3 Consumo mínimo y máximo de un habitante por día.

<table>
<thead>
<tr>
<th>Población</th>
<th>Consumo mínimo (L/hab*día)</th>
<th>Consumo máximo (L/hab*día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2.500 Habitantes</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>2.500 – 12.500 Habitantes</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>12.500 – 60.000 Habitantes</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>>60.000 Habitantes</td>
<td>150</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: (Reglamento técnico del Sector de Agua Potable y Saneamiento Básico, 2000).
9.4 METODOLOGÍA DRASTIC

La metodología utiliza siete parámetros D-R-A-S-T-I-C, que dependen del clima, el suelo, el sustrato superficial y subterráneo como se presenta en la Figura 3.

![Diagrama de la metodología DRASTIC]

D: Depth to water (Profundidad del agua subterránea o nivel freático).
Este primer parámetro indica el espesor de la zona no saturada que es atravesado por las aguas de infiltración y que pueden traer consigo el contaminante, hasta alcanzar el acuífero.

La información utilizada en este parámetro debe estar en metros, y se puede obtener por medio de pozos perforados y excavados analizados en trabajos de campo en la zona de estudio, también en informes existentes, donde puede ser necesaria una verificación (Mena López & Montes García, 2010). En la Tabla 4, se expone la valoración del parámetro D para el método DRASTIC.

<table>
<thead>
<tr>
<th>D (PROFUNDIDAD, m)</th>
<th>Dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 1.5</td>
<td>10</td>
</tr>
<tr>
<td>1.5 – 4.6</td>
<td>9</td>
</tr>
<tr>
<td>4.6 – 9.1</td>
<td>7</td>
</tr>
<tr>
<td>9.1 – 15.2</td>
<td>5</td>
</tr>
<tr>
<td>15.2 – 22.9</td>
<td>3</td>
</tr>
<tr>
<td>22.9 – 30.5</td>
<td>2</td>
</tr>
<tr>
<td>>30.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).

R: Recharge (Recarga neta).

El segundo parámetro indica la cantidad de agua anual por unidad de superficie que contribuye a la alimentación del acuífero. La recarga resulta primariamente de la
fracción de precipitación, evapotranspiración y de la escorrentía superficial. Es el principal transportador de los contaminantes.

La recarga puede determinarse por varios métodos y se clasifican en 5 grupos como los menciona (Vélez Otálvaro, 2010, pág. 19):

- **Medidas directas**: la recarga se mide directamente por medio de la construcción de lisímetros.

- **Balance hídrico**: se calculan los flujos de entrada y de salida de un sistema, y la recarga constituye el sobrante de la ecuación de balance.

- **Trazadores**: Su principal uso es determinar fuentes de recarga y zonas de descarga aunque se utilizan para cuantificar la recarga a través de un balance de masa del trazador.

- **Aproximaciones de Darcy**: se encuentran valores de cabezas hidráulicas a partir de las ecuaciones de flujo de Richards y Boussinesq y luego se determina la velocidad de filtración.

- **Empíricos**: consiste en el desarrollo de ecuaciones empíricas que relacionan la recarga con alguna variable como la precipitación y/o la temperatura.

En la Tabla 5, se expone la valoración del parámetro R para el método DRASTIC.

<table>
<thead>
<tr>
<th>R (RECARGAS, mm)</th>
<th>Rr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 50</td>
<td>1</td>
</tr>
<tr>
<td>50 – 103</td>
<td>3</td>
</tr>
<tr>
<td>103 – 178</td>
<td>6</td>
</tr>
<tr>
<td>178 – 254</td>
<td>8</td>
</tr>
</tbody>
</table>
La tercera variable representa las características del acuífero, en particular la capacidad del medio poroso y/o fracturado para transmitir contaminantes. Para adquirir este parámetro se puede apoyar en pozos ya perforados o excavados, también por afloramiento de estratos en la ribera de los ríos (Mena López & Montes García, 2010). En la Tabla 6, se expone la valoración del parámetro A del método DRASTIC.

Tabla 6 Valoración del parámetro A del método DRASTIC.

<table>
<thead>
<tr>
<th>A (LITOGRAFÍA DEL ACUIFERO)</th>
<th>VALORACIÓN AN</th>
<th>VALOR TÍPICO AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutita masiva</td>
<td>1 – 3</td>
<td>2</td>
</tr>
<tr>
<td>Metamórfica/Ígnea</td>
<td>2 – 5</td>
<td>3</td>
</tr>
<tr>
<td>Metamórfica/Ígnea meteorizada</td>
<td>3 – 5</td>
<td>4</td>
</tr>
<tr>
<td>Arenas y gravas de origen glaciar</td>
<td>4 – 6</td>
<td>5</td>
</tr>
<tr>
<td>Secuencias de arenisca, caliza y lutitas</td>
<td>5 – 9</td>
<td>6</td>
</tr>
<tr>
<td>Arenisca masiva</td>
<td>4 – 9</td>
<td>6</td>
</tr>
<tr>
<td>Caliza masiva</td>
<td>4 – 9</td>
<td>6</td>
</tr>
<tr>
<td>Arena o grava</td>
<td>4 – 9</td>
<td>8</td>
</tr>
<tr>
<td>Basaltos</td>
<td>2 – 10</td>
<td>9</td>
</tr>
<tr>
<td>Caliza kárstica</td>
<td>9 – 10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).
S: Soil media (Tipo de suelo).

El cuarto parámetro representa la capacidad de los suelos para oponerse a la movilización de los contaminantes y corresponden la parte de la zona vadosa o no saturada, que se caracteriza por la actividad biológica. En conjunto, con el parámetro A, determinan la cantidad de agua de percolación que alcanza la superficie freática.

La información mencionada anteriormente se puede obtener en los mapas de suelos hechos por cada país o por análisis que se hallan hecho en la zona de estudio, también se puede complementar por inspecciones geofísicas. En la Tabla 7, se expone la valoración del parámetro S para el método DRASTIC.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VALORACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (TIPO DE SUELO)</td>
<td></td>
</tr>
<tr>
<td>Delgado o ausente</td>
<td>10</td>
</tr>
<tr>
<td>Grava</td>
<td>10</td>
</tr>
<tr>
<td>Arena</td>
<td>9</td>
</tr>
<tr>
<td>Agregado arcilloso o compactado</td>
<td>7</td>
</tr>
<tr>
<td>Arenisca margosa</td>
<td>6</td>
</tr>
<tr>
<td>Marga</td>
<td>5</td>
</tr>
<tr>
<td>Limo margoso</td>
<td>4</td>
</tr>
<tr>
<td>Arcilla margosa</td>
<td>3</td>
</tr>
<tr>
<td>Estiércol-cieno</td>
<td>2</td>
</tr>
</tbody>
</table>
Arcilla no compactada o no agregada

Fuente: (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).

T: Topography (Topografía o Pendiente).

El quinto parámetro representa la pendiente de la superficie topográfica e influye en la evacuación de aguas con contaminantes por escorrentía superficial y sub-superficial.

En este parámetro es necesario conocer la elevación, pendientes, variables de la superficie del terreno, curso del agua superficial, densidad de corriente de la red. Toda esta información se puede adquirir por medio de mapas que contengan curvas de nivel del lugar de estudio (Mena López & Montes García, 2010). En la Tabla 8, se expone la valoración del parámetro S del método DRASTIC.

<table>
<thead>
<tr>
<th>T (PENDIENTE, %)</th>
<th>Tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>10</td>
</tr>
<tr>
<td>2 – 6</td>
<td>9</td>
</tr>
<tr>
<td>6 – 12</td>
<td>5</td>
</tr>
<tr>
<td>12 – 18</td>
<td>3</td>
</tr>
<tr>
<td>>18</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).
I: Impact of the Vadose Zone Media (naturaleza de la zona no saturada).

El sexto parámetro representa la capacidad del suelo para obstaculizar el transporte vertical.

Para poder obtener este parámetro es necesario recurrir a la información de pozos perforados o excavados, y afloramientos observados en la zona que se estudia; estudios hidrogeológicos previos pueden ayudarnos a suministrar toda la información (Mena López & Montes García, 2010). En la Tabla 9, se expone la valoración del parámetro I del método DRASTIC.

<table>
<thead>
<tr>
<th>I (NATURALEZA DE LA ZONA NO SATURADA)</th>
<th>VALORACIÓN I<sub>r</sub></th>
<th>VALOR TÍPICO I<sub>r</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capa confinable</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cieno-arcilla</td>
<td>2 – 6</td>
<td>3</td>
</tr>
<tr>
<td>Lutita</td>
<td>2 – 5</td>
<td>3</td>
</tr>
<tr>
<td>Caliza</td>
<td>2 – 7</td>
<td>6</td>
</tr>
<tr>
<td>Arenisca</td>
<td>4 – 8</td>
<td>6</td>
</tr>
<tr>
<td>Secuencias de arenisca, caliza y lutita</td>
<td>4 – 8</td>
<td>6</td>
</tr>
<tr>
<td>Arena o grava con contenido de cieno y arcilla significativo</td>
<td>4 – 8</td>
<td>6</td>
</tr>
<tr>
<td>Metamórfica/Ignea</td>
<td>2 – 8</td>
<td>4</td>
</tr>
<tr>
<td>Grava y arena</td>
<td>6 – 9</td>
<td>8</td>
</tr>
<tr>
<td>Basalto</td>
<td>2 – 10</td>
<td>9</td>
</tr>
<tr>
<td>Caliza kárstica</td>
<td>8 – 10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).
C: Hydraulic Conductivity of the aquifer (Conductividad hidráulica del acuífero)

El séptimo y último parámetro determina la cantidad de agua que atraviesa el acuífero por unidad de tiempo y por unidad de sección, es decir la velocidad.

Este parámetro debe ser medido en metros sobre día, y la información es obtenida de informes de pozos perforados o excavados, del mismo modo, se puede complementar de estudios hidrogeológicos previos (Mena López & Montes García, 2010). En la Tabla 10, se expone la valoración del parámetro C del método DRASTIC.

<table>
<thead>
<tr>
<th>C (CONDUCTIVIDAD HIDRÁULICA)</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/día</td>
<td>Cm/s</td>
</tr>
<tr>
<td>0.04 – 4.08</td>
<td>4.610^5 – 4.710^3</td>
</tr>
<tr>
<td>4.08 – 12.22</td>
<td>4.710^3 – 1.410^2</td>
</tr>
<tr>
<td>12.22 – 28.55</td>
<td>1.410^2 – 3.410^2</td>
</tr>
<tr>
<td>28.55 – 40.75</td>
<td>3.410^2 – 4.710^2</td>
</tr>
<tr>
<td>40.75 – 81.49</td>
<td>4.710^2 – 9.510^2</td>
</tr>
<tr>
<td>>81.49</td>
<td>>9.5*10^2</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).

De la misma manera, el método asigna un factor de ponderación a los parámetros mencionados anteriormente los cuales tienen valores que están entre 1.0 y 5.0. En la Tabla 11, se observa dicha valoración.
El valor índice se obtiene, entonces, de la sumatoria de la multiplicación de cada parámetro por su respectivo factor de ponderación, como se muestra a continuación:

\[iV_{DRASTIC} = (D_r \times D_w) + (R_r \times R_w) + (A_r \times A_w) + (S_r \times S_w) + (T_r \times T_w) + (I_r \times I_w) + (C_r \times C_w) \]

\[r: \text{ Factor de ponderación o de valoración} \]
\[w: \text{ Factor de ponderación} \]

En el mismo orden de ideas, el método DRASTIC proporciona unos grados de vulnerabilidad que van desde 23 (muy bajo) hasta 230 (Muy Alto), como se muestra en la Tabla 12.
Tabla 12 Grados de vulnerabilidad del método DRASTIC.

<table>
<thead>
<tr>
<th>GRADO</th>
<th>VULNERABILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Bajo</td>
<td>23 – 64</td>
</tr>
<tr>
<td>Bajo</td>
<td>65 – 105</td>
</tr>
<tr>
<td>Moderado</td>
<td>106 – 146</td>
</tr>
<tr>
<td>Alto</td>
<td>147 – 187</td>
</tr>
<tr>
<td>Muy Alto</td>
<td>188 – 230</td>
</tr>
</tbody>
</table>

Fuente: (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).
10. DISEÑO METODOLÓGICO

10.1 ÁREA DE ESTUDIO

El municipio de Cota se encuentra ubicado en el Departamento de Cundinamarca – Colombia (Figura 4), hace parte del altiplano cundiboyacense y del sistema hídrico de la cuenca mayor del río Bogotá y la subcuenca sector Tiritó - Salto del Tequendama.

El territorio municipal comprende 5.343,56 hectáreas, de las cuales aproximadamente 141,56 hectáreas pertenecen al área urbana y las restantes 5.202 al área rural (Secretaría de salud, 2009). Los niveles piezométricos se ubican entre los 2.550 y los 2.520 msnm, el agua subterránea fluye en sentido SE-NO y el flujo drena al colector principal del área que es el río Bogotá; los gradientes hidráulicos son del orden de 0,001, característico de limos de baja conductividad hidráulica (CAR, 2008, pág. 74).

La cobertura del acueducto Municipal es del 100%, con una continuidad de servicio de 24 horas diarias (Secretaría de salud, 2009). Aunque es evidente la deficiencia en cuanto a continuidad y cobertura en el momento de que alguno de los pozos que suministran agua potable se encuentra en mantenimiento (AGUAS DE LA SABANA DE BOGOTA S.A. E.S.P., 2014). Adicionalmente existen algunos factores que acrecientan la problemática, tal y como lo son una alta tasa de crecimiento poblacional del Municipio de Cota, la mala utilización del mismo por los habitantes.
y la alta demanda debido a la construcción de urbanizaciones y actividades comerciales que demandan reservas de agua (EMSERCOTA S.A. E.S.P., 2014).

Figura 4 Mapa de la ubicación del municipio de Cota-Cundinamarca y los pozos de explotación.

10.2 OFERTA HÍDRICA

Los cuatro pozos mencionados anteriormente, son la fuente principal de producción de agua potable que abastece a toca la población del Municipio de Cota - Cundinamarca, este vital líquido es utilizado para el consumo de los habitantes y en varios casos para la utilización industrial, según (EMSERCOTA S.A. E.S.P., 2014), la mayoría de las empresas utilizan para sus procesos industriales pozos privados los cuales cuentan con un licenciamiento vigente y un control de extracción por las entidades competentes.

Para determinar la oferta hídrica, se hizo trabajo de campo el cual tuvo como finalidad visitar a cada uno de los pozos y solicitar información de los caudales que se están extrayendo actualmente, dicha información fue suministrada por las personas encargadas de la supervisión de cada pozo y además se complementó en las oficinas del acueducto La Moya. En la Tabla 13 se exponen la producción de cada uno de los pozos.

Tabla 13 Producción de agua de los pozos en Cota, Cundinamarca.

<table>
<thead>
<tr>
<th>Nombre del Pozo</th>
<th>Q (lt/seg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozo La Moya</td>
<td>3.5</td>
</tr>
<tr>
<td>Pozo Cetime</td>
<td>18</td>
</tr>
<tr>
<td>Pozo El Abra</td>
<td>8</td>
</tr>
<tr>
<td>Pozo El Abra 2</td>
<td>13.5</td>
</tr>
<tr>
<td>Total segundo</td>
<td>43</td>
</tr>
<tr>
<td>Total día</td>
<td>3715200</td>
</tr>
</tbody>
</table>

Fuente: Acueducto La Moya, 2014.
Según la tabla anterior se define que el Municipio de Cota, Cundinamarca cuenta con un abastecimiento de agua al acueducto de 3´715,200 litros por día, lo que equivale a 1´356,048 metros cúbicos al año.

Según la información anterior, en el Municipio de Cota-Cundinamarca se extrae anualmente un volumen de agua muy importante por año, lo que quiere decir que es vital proteger este recurso y conocer sus áreas vulnerables las cuales se pueda contaminar.

10.3 CALIDAD DEL AGUA SUBTERRÁNEA

El agua para el consumo humano, debe tener unos estándares de calidad aptos los cuales esta fijados en el Decreto 3930 del 2010, en su capítulo III, Articulo 7 el cual especifica que el agua antes de su tratamiento debe tener unos parámetros mínimos, siendo así, la hace apta para el consumo humano.

La Universidad de la Salle en el año 2013, hizo un inventario y seguimiento de la calidad del agua subterránea de aljibes y pozos en las veredas del Abra, el Rozo y Cetime en el Municipio de Cota Cundinamarca.

El estudio consto de la visita de 72 puntos de agua con diferente tipo de estructura tales como: Pozos, aljibes y barrenos. Para tener acceso a las fuentes hídricas, se tuvo la necesidad de solicitar permiso a los propietarios de los predios puesto que
están ubicados en propiedades privadas, menciona (Calderón hernández & Avellaneda Quintero, 2013).

Para el análisis de la calidad del agua de cada uno de las estructuras, se tuvieron en cuenta los siguientes parámetros:

- Temperatura (°C)
- Color (UPC)
- pH
- Conductividad (u/s)
- Turbidez (NTU)
- Hierro (mg/l Fe²⁺)
- Nitratos (mg/l N-NO₃⁻)
- Nitritos (mg/l NO₂⁻)
- DQO (mg/l DQO)
- Sólidos Disueltos (mg/l)
- Sulfatos (mg/l SO₄)
- Fosfatos
- Dureza

Las muestras fueron tomadas directamente en los puntos de agua, posteriormente fueron llevadas al laboratorio de las instalaciones de la Universidad de la Salle (Calderón hernández & Avellaneda Quintero, 2013). Los resultados obtenidos de cada punto fueron suministrados a cada uno de los propietarios, esto se hizo a cambio de obtener ingreso a los pozos.
La ubicación de cada estructura hídrica mencionados anteriormente fueron georreferenciados en ArcMap y los resultados obtenidos de cada parámetro fueron tratados con la herramienta IDW con el fin de obtener isolíneas que muestre el comportamiento de la calidad del agua en el Municipio de Cota - Cundinamarca. A continuación se presentan las isolíneas de los parámetros principales.
La temperatura del agua subterránea de la zona de estudio oscila entre 15 a 21 °C, siendo 18 - 19 los valores más predominantes los cuales ocupan un gran porcentaje del área de estudio. A menor instancia predomina una temperatura de 16 - 17 y 19 - 20 °C respectivamente.
Para la zona de estudio el pH oscila entre 4.01 a 7.9, siendo el menor valor más acido representado con los colores morados, en comparación con las demás zonas se presenta en áreas muy pequeñas, así mismo, el más representativo en la zona son los valores que oscilan entre 5.7 a 7.9.
Como se muestra en la Figura 7, los valores de DQO más representativos y que abarca la mayor área de la zona de estudio oscilan entre 92.9 a 138.9 mg/l, posteriormente le sigue de 47.1 a 92.9 mg/l situada en el área central siendo el segundo valor más representativo. Por otro lado, los valores que se presentan en
menor proporción en la zona de estudio oscilan entre 413.9 a 459.7 y 368 a 413.9 mg/l siendo los valores más altos en concentración de DQO.

Figura 8 Isolineas de hierro del agua subterránea de la zona de estudio.

En la Figura 8 se puede apreciar que el agua de la zona de estudio tiene una concentración de hierro que oscila entre 0,6 a 5,9 mg/l Fe$^{2+}$, siendo este último la
mayor concentración la cual está situada en la parte norte del área de estudio. Además, los valores que mayor área abarca la zona están entre 1,3 a 1,9 mg/l Fe$^{2+}$.

Figura 9 Isolíneas de sólidos disueltos del agua subterránea de la zona de estudio.

Para el caso de los sólidos disueltos, el agua subterránea del área de estudio cuanta con unos valore de 32 a 322,9 mg/l. Los valores más predominantes y que abarcan
la mayor área están entre 161,3 a 193,6 mg/l, posteriormente le sigue de 193,6 a 225,9 mg/l.

Por último, la Figura 10 presenta la distribución de la turbidez del agua subterránea para la zona de estudio la cual oscila entre 0,04 a 93,9 NTU, siendo este último el valor mayor y con menos área de predominancia. Se observa que el valor más predominant está entre 20,9 a 31,3 NTU siguiéndole 10,4 a 20,9 respectivamente.
Por otro lado, con fines de complementar la información anteriormente interpretada, se tomó una muestra en la planta de tratamiento Cetime, en donde contenía agua de los cuatro pozos, esta muestra fue evaluada por el equipo multiparametro (Anexo 1). Con el medidor multiparametro se logró obtener la siguiente información expuesta en la Tabla 16.

Tabla 14 Datos de calidad del agua subterránea obtenidos mediante el equipo multiparametro HANNA.

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>VALOR</th>
<th>UNIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxígeno Disuelto</td>
<td>3.35</td>
<td>Ppm</td>
</tr>
<tr>
<td>Solidos disueltos Totales (tds)</td>
<td>0.057</td>
<td>Ppt</td>
</tr>
<tr>
<td>Sal</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Conductividad</td>
<td>8800</td>
<td>Ω.cm</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>μS/cm</td>
</tr>
<tr>
<td>ORP</td>
<td>89.8</td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>22</td>
<td>°C</td>
</tr>
<tr>
<td>Presión</td>
<td>0.7344</td>
<td>Atm</td>
</tr>
</tbody>
</table>

En términos generales, el equipo multiparametro no presenta valores confiables respecto a los tomados directamente en los laboratorios de la Universidad de la Salle en el año 2013. Esto se debe a que presenta desgaste y no es muy exacto, pero se pueden tener en cuenta como última medida en algunos estudios futuros.
10.4 DEMANDA HÍDRICA DEL MUNICIPIO DE COTA CUNDINAMARCA

Para determinar la demanda hídrica se tuvo en cuenta la proyección de la población y el consumo por habitante según el RAS 2000.

10.4.1 Proyección de la población

Atendiendo a lo establecido por el DANE y debido a la imposibilidad de realizar censos anuales, por el esfuerzo tanto económico como técnico que demandaría, es necesario recurrir a instrumentos técnicos como las proyecciones de población. La Coordinación de Demografía de la Dirección de Censos y Demografía del DANE, es la encargada de llevar a cabo los trabajos de evaluación, análisis y revisión de las estadísticas socio demográficas.

Al revisar la proyección del Municipio de Cota, se observa un crecimiento sostenido en el total de la población, lo que se mantiene acorde con la tendencia departamental y nacional, como se muestra en la Figura 11.
Figura 11 Comparativo Distribución Poblacional 1.985 – 2.020.

Fuente: (DANE, 2011).

Según la proyección realizada en la Figura 11, para el año 2015 hay aproximadamente 24.916 habitantes en el territorio correspondiente al Municipio de Cota – Cundinamarca.

8.4.1.1 Población rural y urbana

Al revisar la proyección poblacional por área de residencia, se observa un incremento en la población que se ubica en la zona urbana en tanto que la población rural se mantiene estable; esta situación puede originarse en los procesos de urbanización a que se está viendo sometida Cota. Al respecto es importante fortalecer los procesos de protección al agro, de modo que la población ubicada en esta zona, no abandone la actividad agraria.
Según la tabla anterior, se sabe que la población de Cota Cundinamarca para el año 2015 es de aproximadamente 24.916 habitantes, de los cuales el 44% está ubicada en las extensiones urbanas del Municipio que corresponde a 10.963 habitantes y el 56% está asentada en extensiones rurales que corresponde a 13.953 habitantes (Secretaría de salud, 2009).

Entonces, según la proyección, el casco urbano del Municipio de Cota cuanta con una población de aproximadamente 10.963 habitantes, por lo tanto el (Reglamento técnico del Sector de Agua Potable y Saneamiento Básico, 2000), para poblaciones promedio de 2,500 a 12,500 habitantes, se tiene un consumo mínimo por habitante día de 120 litros, entonces, la demanda hídrica para el casco urbano del municipio corresponde a:

\[
120 \frac{L}{hab \cdot dia} \times 10.963 Hab = 1 \, 315.564,8 L/dia
\]

Según lo anterior expuesto, la demanda de agua potable del casco urbano de Cota corresponde a un 35.4% del total de agua producida por el acueducto y es abastecida por los cuatro pozos. El 64.6% restante del agua producida de los cuatro pozos que abastecen el acueducto es utilizada en los procesos económicos del Municipio.

En general, lo que se busca es identificar la importancia de evaluar la vulnerabilidad del agua subterránea en el Municipio, se ha identificado la importancia de proteger el recurso hídrico debido a que la mayoría de habitantes dependen de este ya que las fuentes superficiales que existen son muy escasas y la mayoría están contaminadas.
10.5 PRESENTACIÓN DE LA INFORMACIÓN PARA METODOLOGÍA DRASIC

Para la recolección de la información de cada uno de los parámetros de la metodología, se tuvo en cuenta información cartográfica, estudios preliminares y visitas de campo con el fin de poder aplicar la metodología, como también información suministrada por el Municipio, el IDEAM y la CAR.

10.6 HIDROLOGÍA

El análisis hidrológico se realizó a partir del procesamiento estadístico de datos meteorológicos de 6 estaciones las cuales están situadas alrededor del Municipio de Cota, puesto que en el área de influencia del proyecto no se hallaron datos significativos, sin embargo se cuenta con 6 estaciones que aportan datos históricos importantes con los cuales se hicieron comparaciones de precipitación y temperatura.

10.6.1 Precipitación

Para el análisis de los datos de precipitaciones se tomaron los valores medios mensuales multianuales de las 6 estaciones mencionadas anteriormente. Las estaciones climatológicas utilizadas para el análisis hidrológico se relacionan en la Tabla 17 y los datos meteorológicos se presentan en el Anexo 6.
Tabla 15 Estaciones climatológicas situadas alrededor del área de influencia para el análisis hidrológico.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>longitud</th>
<th>latitud</th>
<th>ubicación</th>
<th>tipo</th>
<th>periodos P</th>
<th>periodo T</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTO GUAYMARAL</td>
<td>74°05’W</td>
<td>04°49’N</td>
<td>Bogotá</td>
<td>CP</td>
<td>1965-2014</td>
<td>1966-2012</td>
</tr>
<tr>
<td>GUANATA</td>
<td>74°03’W</td>
<td>04°53’N</td>
<td>Chía</td>
<td>ME</td>
<td>1996-2013</td>
<td>2006-2013</td>
</tr>
<tr>
<td>PRIMAVERA LA</td>
<td>74°13’W</td>
<td>04°51’N</td>
<td>Subachoque</td>
<td>PM</td>
<td>1980-2014</td>
<td>-</td>
</tr>
<tr>
<td>SANTA INÉS</td>
<td>74°08’W</td>
<td>04°49’N</td>
<td>Tenjo</td>
<td>CP</td>
<td>1963-2014</td>
<td>1966-2012</td>
</tr>
</tbody>
</table>

La zona de estudio está localizada en el Departamento de Cundinamarca, caracterizada como uno de los Municipios importantes del mismo, además hace parte de la cuenca del río Bogotá. La distribución de la precipitación está influenciada por la Zona de Confluencia Intertropical (ZCIT), en donde se presencia vientos cargados de humedad en el trópico, dando lugar a una franja de bajas presiones que generan características climáticas singulares en el territorio.

En esta zona, se mueven masas de aires provenientes de los trópicos del norte y del sur, dando como resultado una inestabilidad atmosférica, en compañía de nubes, lluvias y humedad relativa (CIDERTER SAS, 2009, pág. 9).

Las estaciones de propiedad del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) y de la Corporación Autónoma Regional (CAR), presentan un registro meteorológico multianual superior a los 18 años como se muestra en la
Tabla 1 con el cual se realiza el análisis hidrológico. De acuerdo con el histograma presente en la Figura 12, se evidencia un régimen de lluvias de 4 periodos importantes dos de altas y dos de bajas precipitaciones.

Figura 12 Precipitación media mensual multianual de las 6 estaciones climatológicas situadas alrededor del área de influencia.

Fuente: El presente trabajo, 2015

Los valores de precipitación registrados en cada estación tienen un comportamiento similar, sin embargo, se describe más detalladamente su comportamiento:

De acuerdo con la Figura 12, la estación climatológica principal de APTO GUAYMARAL presenta una precipitación anual de 783.2 mm, las mayores precipitaciones ocurren en los meses de abril con 97.89 mm y para el segundo semestre en el mes de octubre con 108.72 mm (siendo el más lluvioso dentro del
año), presenta los menores valores medios para el mes de enero con 31.81 mm para el primer semestre y finalmente de 44.44 y 47.72 mm para los meses de agosto y diciembre en el segundo semestre.

La estación CP de TABIO (ver Figura 12), presenta una precipitación anual de 755.01 mm, siendo el periodo más lluvioso en el mes de abril con 100.40 mm y para el segundo semestre el mes de octubre con 101.58 mm, los períodos menos lluviosos se presentan en los meses de enero con 28.45 y febrero con 47.75 para el primer semestre y para el segundo semestre el mes de diciembre con 49.14 mm.

Posteriormente, para la estación ME GUANATA, de acuerdo con la Figura 12, presenta una precipitación anual de 1120.54 mm, siendo la zona con más lluvia respecto a las demás estaciones, para el primer periodo lluvioso el mes de mayo presenta una mayor precipitación de 97.63 mm y para el segundo periodo los meses de octubre y noviembre presentan la mayor precipitación de 111.40 y 103.82 mm y para el primer periodo de poca precipitación tenemos el mes de enero con 39.55 mm y para el segundo periodo el mes de agosto con 50.59 mm, siendo los valores más bajos de todo el año.

La estación CP SAN JORGE GJA presenta una precipitación anual de 704.25 mm durante todo el año, obteniendo en el primer periodo de lluvia alta en el mes de mayo con 93.24 mm y para el periodo dos en el segundo semestre del año en el mes de octubre con una precipitación de 102.91 mm siendo el mes más lluvioso del año, en el primer periodo de poca precipitación el mes de enero presenta 28.41 mm (siendo el mes más seco del año) y para el segundo periodo el mes de agosto presenta una precipitación de 46.74 mm.
Para el caso de la estación de PRIMAVERA LA, presenta en el año una precipitación de 824.75 mm situándola en la segunda zona con más lluvia durante el año, presenta la época con más lluvia en los meses de abril y mayo con 106.93 y 100.85 mm para el primer periodo y para el segundo periodo el mes de octubre presenta la mayor lluvia de todo el año con 111.95 mm, para la época más seca es el primer periodo con el mes de enero presentando una precipitación de 34.76 mm y para el segundo periodo el mes de julio con 55.06 mm.

Finalmente la estación climatológica principal SANTA INÉS (ver Figura 12), presenta una precipitación de 753.40 mm situándola en la zona más seca en comparación con las demás estaciones, presenta en el primer periodo lluvioso una precipitación de 102.22 mm en el mes de abril y para el segundo periodo 104.66 mm en el mes de octubre, la época más seca se presenta en el mes de enero con una precipitación de 31.48 mm para el primer periodo, y para el segundo periodo el mes de agosto con 45.30 mm.

10.6.1.1 Isoyetas

Posteriormente, con los datos obtenidos de precipitación de las estaciones anteriormente mencionadas, y con ayuda de la herramienta ArcMap, se realizó un análisis estadístico ponderado con factor de interpolación IDW para identificar las zonas en común para el régimen de precipitación en el Municipio de Cota Cundinamarca.
Figura 13 Mapa de isoyetas correspondiente a la precipitación total multianual del área limitada por las estaciones meteorológicas.

10.6.2 Temperatura

El comportamiento de la temperatura del Municipio de Cota, está determinada por la relación existente entre temperatura y la altura. El análisis se realizó a partir de la información registrada en las estaciones: Climatológica principal APTO GUAYMARAL, climatología principal TABIO, ME GUANATA, PM SAN JORGE GJA y PRIMAVERA LA.

La estación APTO GUAYMARAL, tiene un comportamiento de la temperatura media mensual sin grandes variaciones a lo largo del año, con un promedio anual de 13.1 °C. La estación CP TABIO presenta de igual forma un comportamiento similar a la anterior con un promedio anual de 13.6 °C. También la ME GUANATA presenta un comportamiento mensual estable, con una temperatura promedio anual de 14 °C situándola en la zona de más temperatura con respecto a las demás. Así mismo, la estación PM SAN JORGE GJA presenta una temperatura promedio anual de 11.7 °C siendo la zona con temperatura más baja durante el año. Finalmente, la estación PRIMAVERA LA presenta un promedio anual de temperatura de 12.3 °C.
Figura 14 Temperatura media mensual multianual de las 5 estaciones climatológicas.

10.6.2.1 Isotermas

Con los datos obtenidos de temperatura de las estaciones anteriormente mencionadas, y con ayuda de la herramienta ArcMap, se realizó un análisis estadístico ponderado con factor de interpolación IDW para identificar las zonas en común para el régimen de temperatura del Municipio de Cota Cundinamarca.
Figura 15 Mapa de isotermas correspondiente a la temperatura media multianual del área limitada por las estaciones meteorológicas.

10.7 BALANCE HÍDRICO

El cálculo del balance hídrico permite obtener información sobre el volumen de agua disponible para escorrentía, el periodo en el cual se presentan déficit o exceso de agua en la zona elegida.

Para el presente trabajo se realiza un balance de entradas y salidas de agua para cada una de las estaciones escogidas, para ello se utilizó la metodología propuesta por Thornthwaite y Mather en 1955 citado por (Ruiz, Arteaga, Vásquez, Ontiveros & López, 2012), donde se establecen los criterios para modelar hídricamente una región utilizando valores de temperatura media mensuales y la precipitación media mensual multianual, teniendo en cuenta los sistemas de control de entrada y salida dando como resultado curvas e histogramas que representan las variaciones climáticas a lo largo de un año.

Se exponen balances establecidos para las estaciones de APTO GUAYMARAL y PRIMAVERA LA puesto que presentan un periodo de balance importante de datos de precipitación de los años 1965 a 2014 y temperatura de los años 1966 a 2012, y para la segunda, datos de precipitación de los años 1963 a 2014 y temperatura de 1966 a 2012 respectivamente.

10.7.1 Estación APTO GUAYMARAL

En la Figura 16, expone que durante el año la curva de precipitación (P) está por debajo de la de evapotranspiración (ETP) en el mes de enero, el cual es el primer periodo de baja precipitación, como también en la última semana del mes de junio
y agosto siendo el segundo periodo de baja precipitación, esto indica un déficit de agua y se alcanza a utilizar las reservas existentes en el suelo.

Figura 16 Balance hídrico de la estación APTO GUAYMARAL, Bogotá

10.7.2 Estación PRIMAVERA LA

En la Figura 17, se evidencia un cambio significativo con respecto a la anterior, se puede apreciar que a mitad del mes de diciembre hasta a mitad del mes de enero se presenta la época de más baja precipitación, en donde también se evidencia que hay un déficit en donde se agotan las reservas del suelo, también, para el segundo periodo (mitad de julio y agosto) hay una estabilidad en cuanto a la precipitación y la evapotranspiración.
En general, para las dos estaciones se presenta un déficit para el primer y segundo periodo de época seca, en donde queda muy poca agua para escorrentía e infiltración, como consecuencia hay una deficiencia en la recarga de los acuíferos en dichas épocas, pero para los dos periodos de lluvia se evidencia una gran cantidad de agua disponible para escorrentía e infiltración según el caso.

Figura 17 Balance hídrico de la estación PRIMAVERA LA, Subachoque.

Fuente: el presente trabajo, 2015
10.8 GEOLOGÍA

10.8.1 Estratigrafía Municipal

En Municipio de Cota Cundinamarca está ubicado en la cordillera oriental, en la zona axial y el inicio de los flancos oriental y occidental. En esta zona las unidades geológicas están representadas en una secuencia sedimentaria con edades del cretáceo superior, paleógeno, neógeno y cuaternario (CIDERTER SAS, 2009, pág. 29).

Según (INGEOMINAS, 1989), en el Municipio de Cota Cundinamarca existen las siguientes unidades geológicas:

10.8.1.1 Formación Guadalupe, KG

Con referencia a lo referenciado por (CIDERTER SAS, 2009, pág. 29) se indica lo siguiente:

“El nombre Guadalupe fue utilizado por primera vez por (Hettner, 1892), quien le asignó el rango de Piso de Guadalupe a las areniscas de la parte alta del Cretácico, que se encuentran en los cerros orientales del área de la sabana de Bogotá. Se emplea aquí esta unidad en el sentido de Renzoni (1962, 1968), es decir, limitada en su base por la última ocurrencia de las lodolitas del Grupo Villete y en su techo por la primera ocurrencia de las lodolitas de la Formación Guaduas. El Grupo Guadalupe, en general, es netamente arenoso”.
10.8.1.2 Formación Chía, QCH1

(Helmens & Van der Hammen, 1995), denominan formación Chía a los depósitos constituidos por sedimentos fluviales de grano fino que afloran a lo largo de los ríos principales que generalmente están por debajo de las llanuras de inundación de los ríos.

Según lo expuesto por (CIDERTER SAS, 2009, pág. 31), en la elaboración del PBOT del Municipio de Cota.

“Esta unidad se extiende a lo largo de la parte baja de la llanura de los Ríos Bogotá y Chicú. La formación corresponde a depósitos originados por las corrientes fluviales del Río Bogotá, los cuales han arrasado depósitos más antiguos como los de Terraza Alta y los depósitos de abanicos aluviales. Estos depósitos están formados, principalmente por arcillas gris verdosas y limos en descomposición”.

10.8.1.3 Formación Sabana, QSA2

Se denomina formación Sabana a los depósitos lacustres que afloran en toda la zona plana y que hace parte de la Sabana de Bogotá. Para (Helmens & Van der Hammen, 1995), esta formación está constituida principalmente por arcillas y hacia las márgenes de la cuenca se observan arcillas orgánicas, arenosas y turbalignita.

Conforme a lo descrito en el Plan Básico de ordenamiento Territorial (PBOT) de Cota, citado por (CIDERTER SAS, 2009, pág. 31):
“La formación se extiende en sentido NE-SW, ubicándose en las terrazas que forman parte de la llanura fluvio-lacustre del Río Bogotá. Constituye el principal relleno de la Sabana de Bogotá. Consta principalmente de gravas, arenas y arcillas. Hacia los bordes de la cuenca sedimentaria, existe un aumento de arcillas orgánicas, turbas, arcillas arenosas y arenas arcillosas intercaladas”.

10.8.1.4 Piedemonte Coluvio – Aluvial, Q(DP)1

Según o citado por (CIDERTER SAS, 2009, pág. 31), indica que:

“Esta unidad localizada en las terrazas altas de la llanura del Río Bogotá; se encuentra formada por sedimentos de origen coluvial, provenientes del proceso de sedimentación que se presentan en las laderas de montaña estructural y por sedimentos de ambiente fluvial. Predominan las areniscas y arcillolitas”.

10.9 INVENTARIO DE PUNTOS DE AGUA

Unas de las finalidades del trabajo de campo fue visitar algunos puntos de agua ubicados dentro del Municipio de Cota, para esto se utilizó el Formato Único Nacional de Aguas Subterráneas (FUNIAS), expuesto por (IDEAM, 2013).
<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo de punto</th>
<th>Nombre</th>
<th>Coordenadas</th>
<th>Altura (m.s.n.m)</th>
<th>Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>P - 1</td>
<td>Pozo</td>
<td>El Salvio</td>
<td>997896</td>
<td>1025878</td>
<td>2478</td>
</tr>
<tr>
<td>P - 2</td>
<td>Pozo</td>
<td>Cetime</td>
<td>997063</td>
<td>1025126</td>
<td>2510</td>
</tr>
<tr>
<td>P - 3</td>
<td>Pozo</td>
<td>Cetime 2</td>
<td>997233</td>
<td>1025035</td>
<td>2481</td>
</tr>
<tr>
<td>P - 4</td>
<td>Pozo</td>
<td>El Abra</td>
<td>996772</td>
<td>1023942</td>
<td>2475</td>
</tr>
<tr>
<td>P - 5</td>
<td>Pozo</td>
<td>El Abra 2</td>
<td>996460</td>
<td>1023628</td>
<td>2489</td>
</tr>
<tr>
<td>P - 6</td>
<td>Pozo</td>
<td>El Abra 3</td>
<td>996070</td>
<td>1023270</td>
<td>2500</td>
</tr>
<tr>
<td>P - 7</td>
<td>Pozo</td>
<td>H. Alcalá</td>
<td>994979</td>
<td>1021132</td>
<td>2534</td>
</tr>
<tr>
<td>P - 8</td>
<td>Pozo</td>
<td>Dora Ruiz</td>
<td>995431</td>
<td>1019928</td>
<td>2561</td>
</tr>
<tr>
<td>P - 9</td>
<td>Pozo</td>
<td>Andro Sangel</td>
<td>995791</td>
<td>1023506</td>
<td>2611</td>
</tr>
<tr>
<td>P - 10</td>
<td>Pozo</td>
<td>Conjunto Abra 1</td>
<td>996526</td>
<td>1022961</td>
<td>2585</td>
</tr>
<tr>
<td>P - 11</td>
<td>Pozo</td>
<td>Nora</td>
<td>997381</td>
<td>1024364</td>
<td>2576</td>
</tr>
<tr>
<td>P - 12</td>
<td>Aljibe</td>
<td>Sra. Rosa</td>
<td>997433</td>
<td>1024397</td>
<td>2626</td>
</tr>
<tr>
<td>P - 13</td>
<td>Aljibe</td>
<td>Sra. Rosa</td>
<td>997383</td>
<td>1024367</td>
<td>2578</td>
</tr>
<tr>
<td>P - 14</td>
<td>Aljibe</td>
<td>Pedro Cantor</td>
<td>997690</td>
<td>1024747</td>
<td>2578</td>
</tr>
</tbody>
</table>

En la Tabla 18 anteriormente expuesta y la Figura 18, se presenta la información básica de los puntos de agua visitados durante las salidas de campo y sus respectivas ubicaciones, esto se hizo con el fin obtener información como; en el caso de los puntos del acueducto, información de caudales y niveles. Para los demás puntos de agua que son de tipo privado, la finalidad fue identificar niveles (Sonda eléctrica), estructura de los perfiles, entre otra información facilitada por los dueños.
Figura 18 Puntos de agua visitados en la zona de estudio.

10.10 ENsayos de inFiltración

Para obtener este parámetro se empleó la metodología planteada en la en la “Guía para la evaluación de la calidad y salud del suelo”, la cual fue diseñada por el Departamento de agricultura, por el servicio de investigación agrícola y conservación de recursos naturales y el instituto de calidad de suelo de los Estados Unidos (USDA, 1999, pág. 7).

Las pruebas de infiltración se hicieron cubriendo la mayor parte de la zona de estudio, estos valores son necesarios para la elaboración del mapa de conductividad hidráulica. Se identificó que en los lugares donde se hicieron las pruebas predomina un suelo con textura franco arenoso y arcillas arenosas.

Tabla 17 Ensayos de infiltración realizados en el área de estudio, Municipio de Cota.

<table>
<thead>
<tr>
<th>Punto</th>
<th>Y (mE)</th>
<th>X (mN)</th>
<th>Tipo de cobertura</th>
<th>Tasa de infiltración</th>
</tr>
</thead>
<tbody>
<tr>
<td>P - 1</td>
<td>998380</td>
<td>1026496</td>
<td>Arcilla arenosa</td>
<td>8681,30 361,72 8,68</td>
</tr>
<tr>
<td>P - 2</td>
<td>998720</td>
<td>1026139</td>
<td>Franco arenoso</td>
<td>1705,06 71,04 1,71</td>
</tr>
<tr>
<td>P - 3</td>
<td>998716</td>
<td>1025454</td>
<td>Franco arenoso</td>
<td>3470,08 144,59 3,47</td>
</tr>
<tr>
<td>P - 4</td>
<td>997433</td>
<td>1024397</td>
<td>Franco arenoso</td>
<td>1573,76 65,57 1,57</td>
</tr>
<tr>
<td>P - 5</td>
<td>997690</td>
<td>1024747</td>
<td>Franco arenoso</td>
<td>1887,93 78,66 1,89</td>
</tr>
<tr>
<td>P - 6</td>
<td>995269</td>
<td>1019735</td>
<td>Franco arcilloso</td>
<td>605,76 25,24 0,61</td>
</tr>
<tr>
<td>P - 7</td>
<td>996034</td>
<td>1023133</td>
<td>Franco arenoso</td>
<td>12246,73 510,28 12,25</td>
</tr>
<tr>
<td>P - 8</td>
<td>992908</td>
<td>1015855</td>
<td>Franco arenoso</td>
<td>1568,41 65,35 1,57</td>
</tr>
<tr>
<td>P – 9</td>
<td>991415</td>
<td>1017006</td>
<td>Franco arcilloso</td>
<td>885,19 36,88 0,89</td>
</tr>
</tbody>
</table>

En los anexos se puede identificar las fotografías de cada prueba de infiltración realizada en la zona.
En el momento de realizar los ensayos de infiltración se pueden distinguir los siguientes términos según lo menciona (Maderey, 2005, pág. 57):
“Intercambio: se presenta en la parte superior del suelo, donde el agua puede retomar a la atmósfera por medio de la evaporación debido al movimiento capilar o por medio de la transpiración de las plantas.

Transmisión: ocurre cuando la acción de la gravedad supera a la de la capilaridad y obliga al agua a deslizarse verticalmente hasta encontrar una capa impermeable.

Circulación: se presenta cuando el agua se acumula en el subsuelo debido a la presencia de una capa impermeable y empieza a circular por la acción de la gravedad, obedeciendo a las leyes del escurrimiento subterráneo”

10.11 ESTIMACIÓN DE LA PROFUNDIDAD DEL AGUA SUBTERRÁNEA

Para la estimación de la profundidad del agua subterránea se hizo validación de los estudios realizados sobre niveles estáticos de algunos pozos presentes en el municipio de cota Cundinamarca, como es el caso de (HIDROGEOCOL LTDA, 2002), también se tomaron datos del estudio geoeléctrico para la prospección de agua subterránea en la finca la ponderosa, Municipio de Cota (AQUAMINAS LTDA, 2002) y se utilizó el estudio realizado por la (CAR, 2009), en donde se hizo una verificación de los niveles estáticos en la sabana de Bogotá.

Por otro lado, se realizó trabajo de campo en donde se efectuó las medidas de niveles estáticos a dos pozos ubicados en el área de estudio (ver Anexo 4). Para
ello se utilizó una sonda eléctrica elaborada con cable dúplex, batería de 1.5v y un multímetro análogo.

<table>
<thead>
<tr>
<th>Código</th>
<th>Fuente</th>
<th>Coordenadas</th>
<th>Nivel Estático (m)</th>
<th>Tipo de Acuífero</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>(HIDROGEOCOL LTDA, 2002)</td>
<td>994215 1020535</td>
<td>29,1</td>
<td>F. Sabana</td>
</tr>
<tr>
<td>P-2</td>
<td>(HIDROGEOCOL LTDA, 2002)</td>
<td>996640 1023530</td>
<td>41,1</td>
<td>F. Sabana</td>
</tr>
<tr>
<td>P-3</td>
<td></td>
<td>993310 1016350</td>
<td>33,5</td>
<td>F. Sabana</td>
</tr>
<tr>
<td>P-4</td>
<td></td>
<td>996900 1023220</td>
<td>34,6</td>
<td>F. Sabana</td>
</tr>
<tr>
<td>P-5</td>
<td></td>
<td>993125 1020400</td>
<td>36,5</td>
<td>G. Guadalupe</td>
</tr>
<tr>
<td>P-6</td>
<td>(AQUAMINAS LTDA, 2002)</td>
<td>991100 1019710</td>
<td>26,7</td>
<td>S. Cuaternario</td>
</tr>
<tr>
<td>P-7</td>
<td>(AQUAMINAS LTDA, 2002)</td>
<td>991150 1019850</td>
<td>31,0</td>
<td>S. Cuaternario</td>
</tr>
<tr>
<td>P-8</td>
<td>(CAR, 2009)</td>
<td>998376 1026586</td>
<td>40,1</td>
<td>NP</td>
</tr>
<tr>
<td>P-9</td>
<td></td>
<td>996540 1022883</td>
<td>40,0</td>
<td>NP</td>
</tr>
<tr>
<td>P-10</td>
<td></td>
<td>993132 1017081</td>
<td>20,0</td>
<td>NP</td>
</tr>
<tr>
<td>P-11</td>
<td>El presente trabajo, 2015</td>
<td>996526 1022961</td>
<td>63,5</td>
<td>NP</td>
</tr>
<tr>
<td>P-12</td>
<td></td>
<td>998827 1025768</td>
<td>45,0</td>
<td>NP</td>
</tr>
</tbody>
</table>

Figura 20 Mapa de puntos de agua con nivel estático ubicados en la zona de estudio.

10.12 ANÁLISIS Y MAPAS DE VULNERABILIDAD DADOS POR LA METODOLOGÍA DRASTIC

El presente estudio está enfocado a la identificación de la vulnerabilidad intrínseca para el acuífero neógeno-cuaternario, ya que es el depósito de agua más superficial y por lo tanto es el más vulnerable a contaminarse (ver Figura 21).

Figura 21 Corte hidrogeológico conceptual de la sabana de Bogotá.

10.12.1 Profundidad del agua subterránea (D)

Establece la profundidad del nivel estático o freático del agua subterránea, tal como lo menciona (Ortiz Aguirre, 1996):
Nivel Estático: Altura del nivel freático o de la superficie piezométrica cuando no está influenciada por el bombeo o alimentación.

Para generar el mapa de profundidad del agua subterránea se utilizó los datos más recientes de niveles estáticos mencionados en la Tabla 20, interpolando con la herramienta IDW de ArcMap, con el fin de obtener una superficie homogénea donde indique las profundidades tal como se muestra en la Figura 22.
Figura 22 Mapa de la profundidad del agua subterránea de la zona de estudio (D).

10.12.2 Recarga neta (R)

La recarga del agua subterránea por precipitación se define como la entrada del agua dentro de la zona saturada, donde comienza hacer parte de las reservas subterránea de agua (Bradbury, Dripps, C, M P, & K W, 2000, pág. 84).

La recarga natural del suelo puede darse por precipitación, por agua superficiales como lo son los río y lagos o por transferencias hidrológicas, pero también puede darse de manera artificial por medio de acueductos o alcantarillados y depósitos (Custodio, 1997, págs. 83-108).

En general, la recarga por lluvia es la más importante, es así que la recarga producida por ríos y lagos es importante para zonas poco lluviosas y la debida a fugas de redes de acueductos y alcantarillado es de gran importancia en zonas urbanas (Vélez Otálvaro, 2010, págs. 18-21).

La recarga puede determinarse de distintos métodos los cuales se dividen en 5 grupos según los menciona (Vélez Otálvaro, 2010, pág. 19). Entre los cinco grupos está el método de expresiones empíricas para estimar la recarga potencial por precipitación. En el caso del área de estudio, no se tiene suficiente información de variables hidrológicas y/o las herramientas para determinar la recarga según otras metodologías, en estos casos, como una primera aproximación pueden ser útiles expresiones empíricas para calcular la recarga potencial, así como las muestra (Lerner, Issar, & Simmers, 1990).

Según (Turc, 1954), citado por (Vélez Otálvaro, 2010, pág. 20), la recarga se puede calcular así:
\[r = p \left[1 - \left(0.9 + \frac{p^2}{L^2} \right)^{-0.5} \right] \]

\[L = 300 + 25T + 0.05T^2 \]

Donde \(r \) es la recarga (mm/año); \(p \) es la precipitación (mm/año) y \(T \) la temperatura media anual (°C).

Entonces, la recarga para la zona de estudio corresponde a 281.78 mm/año, lo que equivale a 15052687.6 m³ de agua. En la Figura 23 muestra que la distribución es uniforme ya que se toma la precipitación media multianual y temperatura media mensual multianual de la zona de estudio.
10.12.3 Litología y estructura del acuífero (A)

La litología y estructura del medio acuífero es homogénea para el caso del presente proyecto, se tomó según lo descrito en el corte hidrogeológico esquemático de la cuenca del río Bogotá, citado por (Lobo-Guerrero Uscátegui, 1992, pág. 14). Se
trata de la formación Guadalupe Constituido por areniscas compactas y friables con intercalaciones de limolitas y arcillolitas/lutitas (ver Figura 24).

Figura 24 Mapa de la litología y estructura del acuífero de la zona de estudio, (A).

10.12.4 Tipo de suelo (S)

Con base a lo descrito en el PBOT del municipio de Cota Cundinamarca (CIDERTER SAS, 2009, págs. 39, 42), los suelos son margosos de tipo franco-arenosos, constituidos principalmente de arcilla, limo y arena. En las partes altas de la cordillera presente dentro del área es estudio el suelo está constituido por gravas mescladas con arenas y arcillas (ver Figura 25).
Figura 25 Mapa del tipo de suelo en la zona de estudio, (S).

10.12.5 Topografía o pendiente (T)

Para obtener los valores de esta variable fue necesario utilizar el programa Global Mapper, mediante la superposición de imágenes elaborar curvas de nivel que posteriormente fueron llevadas a la herramienta ArcMap donde fueron procesadas.
para la elaboración de un TIN y un DEM y así obtener las pendientes en porcentaje como se muestra en la Figura 26.

Figura 26 Mapa de pendientes de la zona de estudio, (T).

10.12.6 Naturaleza de la zona no saturada (I)

Para la definición del parámetro se tomó como referencia el mapa que elaboró INGEOMINAS (1989), donde describe la composición del neógeno-cuaternario el cual está constituido por las capas de las formaciones Sabana (arcillas orgánicas, turbas, arcillas arenosas, y arenas arcillosas intercaladas), formación Chía (Arcillas de inundación) y en la parte alta gran contenido de gravas y arenas mezcladas (ver Figura 27).
Figura 27 Mapa de la naturaleza y de las zonas no saturadas de la zona de estudio, (I).

10.12.7 Conductividad hidráulica (C)

Para obtener este parámetro, se tienen en cuenta las pruebas de infiltración desarrolladas en campo, en la Figura 28 se muestra las isolíneas desplazándose desde los puntos donde se realizaron los ensayos de infiltración. También muestra
las distintas velocidades con que el agua penetra en los diferentes lugares de la zona de estudio.

Figura 28 Mapa de conductividad hidráulica en la zona de estudio, (C).

10.12.8 Análisis de los resultados de vulnerabilidad intrínseca para la metodología DRASTIC

A continuación se hace recuento de cada uno de los parámetros determinados anteriormente.

Parámetro (D)

Gracias a los datos obtenidos en trabajo de campo y suministrados por las diferentes entidades (ver Tabla 20), y con ayuda del Software ArcGis 10.1 se interpolaron los valores de profundidad, posteriormente se hizo una reclasificación de los mismos con el fin de obtener los rangos de profundidad que establece la metodología DRASTIC, para este caso, en la Figura 22 se observa que la menor profundidad del área de estudio oscila entre 20-30.5m la cual se le establece un valor de 2 y la mayoría del área central y norte, la profundidad estática es mayor a 30.5m la cual corresponde una valoración de 1.

Parámetro (R)

Para el caso de la recarga, se utilizó la fórmula empírica de (Turc, 1954), citado por (Vélez Otálvaro, 2010, pág. 20), en donde se utiliza los valores medios multianuales de precipitación y temperatura de la zona de estudio, en este caso corresponde a 770 mm/año y una temperatura de 12.05 °C, estos valores se obtuvieron a partir de las isoyetas e isotermas mencionadas anteriormente. Al reemplazar los valores en la fórmula, arroja un recarga de 281.78 mm/año, donde según la metodología es mayor a 254 mm/año, entonces, tiene una valoración de 9.
Parámetro (A)

Así mismo, para la litología y estructura del acuífero, se tomó información citada por (Lobo-Guerrero Uscátegui, 1992, pág. 14), en donde se trata de la formación Guadalupe el cual está constituido principalmente por areniscas compactadas con algunas intercalaciones de arcillolitas. Entonces, la metodología DRASTIC específica que para este tipo de acuífero se le asigna una numeración de 6 (ver Tabla 6).

Parámetro (S)

La información sobre el tipo de suelo de la zona de estudio se obtuvo mediante la descrita en el PBOT del Municipio, el cual especifica que son suelos margosos constituidos principalmente por arcillas, limos y arenas el cual la metodología asigna una valoración de 6, y para la parte alta son suelos presenta una alta cantidad de gravas y arenas al cual se le establece una valoración de 10.

Parámetro (T)

Para el caso de la pendiente, se obtuvo mediante el Software ArcGis, en donde se estableció que el área de estudio tiene las siguientes pendientes con su respectiva valoración DRASTIC:

0 – 2 % valoración de 10

2 – 6 % valoración de 9
6 – 12 % valoración de 5

12 – 18 % valoración de 3

Mayor a 18 valoración de 1

Las pendientes en general son bajas, lo que indica que cualquier tipo de contaminante tiende a estancarse, esto hace que el contaminante tenga más probabilidad de infiltrarse. Para los casos de la pendiente mayor a 18%, existe más presencia de escorrentía y presentaría menos infiltración.

Parámetro (I)

La naturaleza de la zona no saturada corresponde a la estructura existente entre en nivel freático y la superficie del suelo. Según (INGEOMINAS, 1989), la zona de estudio está constituida por la formación Chía, formada principalmente por arcillas de inundación puesto que se encuentra el Río Bogotá, el Río Chicú y algunas zonas húmedas (ver Figura 27), la cual tiene una valoración DRASTIC de 3, también está la formación Sabana constituida por arcillas orgánicas, turbas y arcillas arenosas intercaladas, para la cual se le da una valoración de 6, por último, en la parte de las pendientes altas, está constituida principalmente por gravas y arenas mezcladas a la cual se le asigna una valoración de 8.

La formación Chía es poco vulnerable puesto que las arcillas impiden la infiltración. Para la formación Sabana, por el contenido de arenas, puede ser vulnerable porque puede presentar una infiltración más rápida y no alcanzaría a degradar el
contaminante. La vulnerabilidad de la zona donde se presentan gravas es muy baja, porque además de tener pendiente alta, también son materiales difíciles de infiltrar.

Parámetro (C)

El último parámetro, representa la conductividad hidráulica de la zona de estudio, la cual fue determinada mediante los ensayos de infiltración, para esto, se hizo una interpolación de datos con la herramienta IDW de ArcGis y posteriormente se reclasificó obteniendo las siguientes velocidades de infiltración:

0.04 – 4.08 m/día valoración de 1

4.08 – 12.22 m/día valoración 2

Para las zonas con más contenido de arcillas presenta una infiltración muy baja a diferencia de las zonas donde los suelos son principalmente francos arenosos.

Todo lo anteriormente expuesto se resume en la Tabla 21 en donde representa los valores correspondientes a la vulnerabilidad intrínseca del acuífero para el Municipio de Cota, Cundinamarca.
Tabla 19 Valores DRASTIC para el municipio de Cota Cundinamarca.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Profundidad (D)</th>
<th>Recarga (R)</th>
<th>Litología (A)</th>
<th>Tipo de suelo (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20-30,5m</td>
<td>>30,5m</td>
<td>>254mm</td>
<td>Arenisca Masiva</td>
</tr>
<tr>
<td>Valor</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arenisca Margosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grava</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pendiente (T)</th>
<th>Variable</th>
<th>0-2%</th>
<th>2-6%</th>
<th>6-12%</th>
<th>12-18%</th>
<th>>18%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naturaleza zona no saturada (I)</th>
<th>Conductividad (C)</th>
<th>Variable</th>
<th>Cieno</th>
<th>Arena, Cieno y Arcilla</th>
<th>Grava y Arena</th>
<th>0,04-4,08m/día</th>
<th>4,08-12,22m/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cada uno de los valores mencionados se detalla cartográficamente en la sección 7.4.1.

Posteriormente, con algebra de mapas, mediante la herramienta de análisis espacial del Software ArcGis 10.1, se ponderan los valores de cada uno de los siete mapas anteriormente expuestos (ver Figura 29).
Este procedimiento arrojó como resultado la distribución del análisis de vulnerabilidad establecido por la metodología DRASTIC, se limita en dos valores de cinco descritos en la metodología, moderado y alto como se muestra en la Tabla 22.
Tabla 20 Evaluación de la vulnerabilidad DRASTIC en el área de estudio.

<table>
<thead>
<tr>
<th>Evaluación de la vulnerabilidad DRASTIC</th>
<th>Área de influencia (Km²)</th>
<th>Área (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderado</td>
<td>32,543031</td>
<td>60,9</td>
</tr>
<tr>
<td>Alto</td>
<td>20,88695</td>
<td>39,1</td>
</tr>
</tbody>
</table>

La Tabla 22 indica que la zona de estudio tiene un área de 32.54 km² de vulnerabilidad Moderada y 20.88 km² de vulnerabilidad alta como se muestra en la Figura 29.
CONCLUSIONES

- Se identificó la oferta hídrica de agua subterránea de los cuatro pozos que abastecen de agua potable al Municipio de Cota, corresponde a 3´715,200 litros por día, así mismo, según la metodología de (Turc, 1954), citado por (Vélez Otálvaro, 2010, pág. 20), el Municipio de Cota tiene una recarga de los acuíferos equivalente a 15´052.687,6 m³ de agua al año, entonces, se puede decir que esa misma cantidad es la oferta total del Municipio.

- Se identificó el comportamiento de los principales parámetros de calidad de los 72 puntos de agua de la zona de estudio, los cuales presentaron valores que oscilan como se expone a continuación:

 Temperatura: de 15 a 21 °C
 pH: de 4.01 a 7.9
 DQO: de 1.2 a 459.7 mg/L
 Hierro: de 0 a 5.9 mg/l de Fe⁺²
 S. Disueltos: de 32 a 322.9 mg/L
 Turbidez: de 0.04 a 93.9 NTU
 Conductividad: 114 μS/cm
 OD: 3.35 ppm

- Se determinó la demanda hídrica del casco urbano del Municipio de Cota Cundinamarca mediante el método expuesto por: (Reglamento técnico del Sector de Agua Potable y Saneamiento Básico, 2000), la cual
corresponde a 1´315.564,8 L/día, esto corresponde al 35.4% del total producido por el acueducto.

- Se analizó cada uno de los parámetros de la metodología DRASTIC generando un mapa de vulnerabilidad general el cual especifica que 32,543031 km² del área total presenta una vulnerabilidad moderada y 20,88695 km² presenta una vulnerabilidad alta.
RECOMENDACIONES

- Aplicar otros tipos de metodologías diferentes a las empíricas para determinar la recarga de los acuíferos del Municipio, con el fin de obtener la recarga real de los acuíferos y conocer las principales zonas de abastecimiento.

- Capacitar a las comunidades sobre indicadores de calidad de agua, los métodos de desinfección y su importancia para poderla consumir, para que la comunidad sea capaz de reconocer las fuentes de contaminación y realizar las medidas de prevención y mitigación de estos contaminantes.

- Realizar el sondeo total de la demanda hídrica del Municipio, donde se tenga en cuenta el consumo que se genera en las industrias y otras actividades diferentes al consumo por habitante, esto con el fin de identificar la demanda neta de agua del Municipio.

- Tener en cuenta el mapa de vulnerabilidad general expuesto para el desarrollo industrial, agrícola y la urbanización, ya que presenta una zonificación la cual indica las áreas más vulnerables y ayuda a prevenir la contaminación del agua subterránea.

- Con la elaboración del presente estudio, se trasmite la idea para hacer diferentes estudios con el fin de proteger el agua subterránea como la
evaluación de la extracción de agua e identificar los principales focos de contaminación.
BIBLIOGRAFÍA

UNESCO. (1992). *Programa mundial de evaluación de los recursos hídricos (WWAP).* Naciones Unidas.

ANEXOS

Anexo 1 Registro fotográfico para las pruebas de calidad de agua

(a) Planta de tratamiento Cetime.
(b) Planta de tratamiento Cetime.

(c) Medición de calidad del agua con el equipo Multiparametro HANNA.
(d) Datos obtenidos mediante Multiparametro HANNA.
Anexo 2 Registro fotográfico para la recolección de datos de caudales

(a) Asociación acueducto la Moya

Anexo 3 Fotografías del recorrido e inspección de pozos del acueducto y pozos privados.

(a) Inspección pozo La Moya (b) Inspección pozo Cetime
(c) Inspección pozo el Abra

(d) Inspección pozo el Abra 2.

(e) Inspección pozo privado,
Propietaria Dora Díaz. Toma
De ubicación.

(f.) Inspección pozo privado,
propietario: Hacienda Alcalá.
Toma de ubicación.
(g.) Pozo hacienda Alcalá, recolección de información del nivel freático.

(h) Inspección pozo privado, succión tipo mecánico con molino de viento. Propietario: Andro Salgel

Anexo 4 Fotografías de la toma y medición de niveles estáticos en el área de estudio.
(a) Toma de niveles estáticos con zonda casera elaborada con cable dúplex, multímetro análogo y batería AAA.

Anexo 5 Fotografías sobre los ensayos de infiltración dentro del área de estudio.

(a) prueba cultivo de maíz

(b) Prueba cultivo maíz 2
(c) Prueba cultivo lechuga

(d) Prueba zona de aljibe

(f) Prueba zona de cultivo espinaca

(g) Prueba zona residencial

(h) Prueba zona transito ganado

(i) Prueba zona carreteable
(a) Control de pruebas de infiltración con punto se saturación cultivo de la espinaca; propietario Javier Hernández
Anexo 6 Carta convenio con la Alcaldía Municipal de Cota Cundinamarca

Cota, 10 de Noviembre de 2014
500.73.01.0529

Señores
UNIVERSIDAD LIBRE
Atte: Doctor OSCAR LEONARDO ORTIZ MEDINA
DIRECTOR PROGRAMA DE INGENIERIA AMBIENTAL
SEDE BOSQUE POPULAR
CARRERA 70 No 53-40
Bogotá

REF: VULNERABILIDAD DEL RECURSO HIDRICO SUBTERRANES

Cordial Saludo

De conformidad a la referencia, me permito informar que para el municipio es grato conocer que la Universidad Libre, a través de su programa de Ingeniería Ambiental está realizando actividades académicas en la jurisdicción y en especial en la cualificación y cuantificación del recurso hidrogeológico.

Por lo tanto, invito al estudiante ROBER FAYRUTH SOLER PEDRAZA, a que se acerque a esta dependencia, con el fin de contextualizar y poner en marcha su trabajo de grado denominado “EVALUACION DE LA VULNERABILIDAD DEL RECURSO HIDRICO SUBTERRANEO DEL MUNICIPIO CE COTA -CUNDINAMARCA”

Lo anterior, para su conocimiento y fines pertinentes.

Atentamente,

Luis Fernando Viña Leonardi
Secretario Agropecuario, Medio Ambiente y Desarrollo Económico

Elaboró: William Herrera Cuesta, Profesional Universitario
Revisó: Luis Fernando Viña Leonardi
Anexo 7 Carta evidencia de solicitud información a la Corporación Autónoma Regional de Cundinamarca – CAR.

Bogotá,

Señor
ROBERT SOLER
roberf.solerp@unilibrebog.edu.co
Bogotá

ASUNTO: Información de Pozos de Agua Subterránea en Municipio de Cota - Radicado No. 20151109416 de 17/03/2015

Respetado Señor Robert Soler,

Atendiendo su solicitud de obtener registros históricos sobre el nivel estático de pozos de agua subterránea en el Municipio de Cota, con el fin de que sean tenidos en cuenta en su tesis de grado, le adjunto en medio magnético la información correspondiente; junto con el CD le anexo el formato de buen uso de la información y Derecho de Autor, para que sean suscritos en la Dirección de Monitoreo, Modelamiento y Laboratorio Ambiental de la CAR, una vez le sea entregado el CD personalmente; por tanto se puede acercar a la Carrera 7 No. 36 - 45 Piso 3o y entenderse con la Ingeniera Fanny Ríos.

Cordialmente,

CESAR CLAVIJO RÍOS
Director Técnico de DMMLA

Anexos: Un (1) CD y dos (2) folios.
Elaboró: Romulo Ceracheo Chicu / DMMLA

Corporación Autónoma Regional de Cundinamarca - CAR
Dirección de Monitoreo, Modelamiento y Laboratorio Ambiental
República de Colombia

CAR 24/03/2016 21:08
Al Contestar cte este No.: 201521068222
Origen: Dirección de Monitoreo, Meditani
Destino: ROBERT SOLER
Anexos: Un (1) CD y dos (2) foli Fol. 1
Anexo 8 Datos sobre las estaciones meteorológicas suministrados por el IDEAM y la CAR.

La información se presenta en el CD del documento final puesto que es mucha información.
Anexo 9 Formatos FUNIAs para el seguimiento de estructuras de agua subterránea visitados.

Pozo N. 1: Señora Nora

<table>
<thead>
<tr>
<th>Nombre del proyecto:</th>
<th>Evaluación de la Vulnerabilidad del Recurso Hídrico Subterráneo del M. de Cota C, utilizando el modelo DREFSTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha:</td>
<td>2015</td>
</tr>
</tbody>
</table>

1. Información General

- **Diligenciado por:** Fabio Soler
- **Consecutivo:** 1
- **Tipo de punto:** Pozo:
- **Condiciones del punto:** Productivo, Reserva, Abandonado, Inactivo

2. Fuentes de Información

- **Recopilada en campo:** A
- **Nombre:** Nora
- **Municipio:** Cota Cundinamarca
- **Dirección:** Calle 123
- **Teléfono:** 12345678
- **e-mail:** nora@gmail.com

Observaciones: Pozo - Privado

Propietario persona natural

- **Nombre:** Nora
- **D. Identidad:** 12345678
- **Municipio:** Cota Cundinamarca
- **Teléfono:** 12345678

Propietario persona jurídica

- **Razón Social:** N/A
- **NIT:** 12345678
- **Municipio:** N/A
- **Teléfono:** N/A
- **e-mail:** N/A

3. Información del punto

- **Legalización del punto:** No
- **Fecha de expedición:** N/A
- **Cantidad de punto:** 94
- **Resolución No.:** N/A
- **Vencimiento:** N/A

Identificación del punto:

- **Concesionario:** N/A
- **Otra identificación:** N/A
- **Localización del punto:** Condominio Cota Cundinamarca
- **Bipode de ref.:** N/A
- **Superficie:** N/A
- **Vínculo:** N/A

4. Características topográficas, dimensionales, geocorrelacionadas y geológicas

<table>
<thead>
<tr>
<th>Topografía:</th>
<th>Geoforma:</th>
<th>Condición dimética:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depresión:</td>
<td>Abaranco aluvial</td>
<td>Período húmedo:</td>
</tr>
<tr>
<td>Planicie:</td>
<td>Clave aluvial</td>
<td>Período seco:</td>
</tr>
<tr>
<td>Arribaniscia:</td>
<td>Llanura aluvial</td>
<td>Unidad geológica:</td>
</tr>
<tr>
<td>Pedemonte:</td>
<td>Terraza</td>
<td></td>
</tr>
<tr>
<td>Ladera:</td>
<td>Duna</td>
<td></td>
</tr>
<tr>
<td>Colina:</td>
<td>Dolina</td>
<td></td>
</tr>
<tr>
<td>Otra:</td>
<td>Otro</td>
<td></td>
</tr>
</tbody>
</table>

5. Características de los incendios y albañiles

- **Datos de la construcción:** N/A
- **Material de revestimiento:** N/A
| Perforador | Piedra |
| Diametro exterior | Ladrillo |
| Diametro interior | Acero y tipo |
| Diametro de perforacion | Hierro galvanizado |
| Profundidad | m |
| Largo | PVC |
| Ancho | m |
| Esta colapsado? | |

Caracteristicas de explotacion

<table>
<thead>
<tr>
<th>Metodo de extraccion</th>
<th>Tipo de energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba sumergible</td>
<td>Electrica</td>
</tr>
<tr>
<td>Bomba manual</td>
<td>Geotermica</td>
</tr>
<tr>
<td>Molino de viento</td>
<td>ACPM</td>
</tr>
<tr>
<td>Compresor</td>
<td>Electrica</td>
</tr>
<tr>
<td>Motobomba</td>
<td>Otra</td>
</tr>
<tr>
<td>Surgencia natural</td>
<td>Cu?</td>
</tr>
<tr>
<td>Manual</td>
<td></td>
</tr>
</tbody>
</table>

Clase de bomba

<table>
<thead>
<tr>
<th>Potencia</th>
<th>Di?metro:</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>pulg</td>
</tr>
</tbody>
</table>

Profundidad deccion:

| Material | |
|-----------| |
| |

Diseno del pozo: Di?metro y ubicacion de los filtros

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Di?metro</th>
<th>Profundidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Desde Hasta</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Se anexa:

<table>
<thead>
<tr>
<th>columna litologica</th>
<th>Diseño del pozo</th>
<th>pruebas de bombeo</th>
<th>Registro geofisico</th>
<th>Analisis quimico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caracteristicas hidrostaticas

<table>
<thead>
<tr>
<th>Nivel medio del agua</th>
<th>Tiempo de bombeo</th>
<th>Tiempo desde el apagado de la bomba</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Horario:

<table>
<thead>
<tr>
<th>Dia/semana</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M?todo de medida del nivel del agua

<table>
<thead>
<tr>
<th>Medida electrica</th>
<th>Medida metrica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimado</td>
</tr>
<tr>
<td></td>
<td>Transductor de presion-driver</td>
</tr>
</tbody>
</table>

M?todo de medida del caudal:

<table>
<thead>
<tr>
<th>Volumetrico</th>
<th>Aforo volumetrico</th>
<th>Caudal estimado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertadero

<table>
<thead>
<tr>
<th></th>
<th>Volumen del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>de almacenamiento</td>
</tr>
<tr>
<td></td>
<td>m3</td>
</tr>
</tbody>
</table>

Estimado

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Volumen (l)</th>
<th>Tiempo (min)</th>
<th>Caudal (l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Orificial

<table>
<thead>
<tr>
<th></th>
<th>Volumen del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>de almacenamiento</td>
</tr>
<tr>
<td></td>
<td>m3</td>
</tr>
</tbody>
</table>

Manometrico

<table>
<thead>
<tr>
<th></th>
<th>Volumen del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>de almacenamiento</td>
</tr>
<tr>
<td></td>
<td>m3</td>
</tr>
</tbody>
</table>

Micromedidor

<table>
<thead>
<tr>
<th></th>
<th>Volumen del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>de almacenamiento</td>
</tr>
<tr>
<td></td>
<td>m3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de construccion</th>
<th>Di?metro (m)</th>
<th>Largo (m)</th>
<th>Ancho (m)</th>
<th>Profundidad (m)</th>
<th>Capacidad (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embalse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanque</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abarco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Método de surtido:</td>
<td>Risgo iódico</td>
<td>Contacto</td>
<td>Sin información</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanente:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estacional:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermitente:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin información:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:

<table>
<thead>
<tr>
<th>Tipo de monitoreo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasto</td>
</tr>
<tr>
<td>Filtración</td>
</tr>
<tr>
<td>Otro-cual?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propiedades fisicoquímicas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Conductividad eléctrica (S/cm)</td>
</tr>
<tr>
<td>Temperatura °C</td>
</tr>
<tr>
<td>SDT (mg/L)</td>
</tr>
<tr>
<td>Redox-Eh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propiedades organolépticas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color: Inodoro</td>
</tr>
<tr>
<td>Amarillo</td>
</tr>
<tr>
<td>Café</td>
</tr>
<tr>
<td>Apariencia: Claría</td>
</tr>
<tr>
<td>Turbia</td>
</tr>
<tr>
<td>Otra</td>
</tr>
<tr>
<td>Olor: Inodoro</td>
</tr>
<tr>
<td>Añilada</td>
</tr>
<tr>
<td>Otra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de análisis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisicoquímico</td>
</tr>
<tr>
<td>Microbiológico</td>
</tr>
<tr>
<td>isotópico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lugar de muestreo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boca de pozo</td>
</tr>
<tr>
<td>Tanque</td>
</tr>
<tr>
<td>Uvaje</td>
</tr>
<tr>
<td>Nacimiento</td>
</tr>
<tr>
<td>Otro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problemas de calidad:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actividad económica:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso del agua</td>
</tr>
<tr>
<td>Abastecimiento público</td>
</tr>
<tr>
<td>Uso doméstico:</td>
</tr>
<tr>
<td>Agrícola</td>
</tr>
<tr>
<td>Pesquero</td>
</tr>
<tr>
<td>Recreativo</td>
</tr>
<tr>
<td>Industrial</td>
</tr>
<tr>
<td>Transporte</td>
</tr>
<tr>
<td>Otro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del uso del agua:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No usuarios: S</td>
</tr>
<tr>
<td>No usuarios</td>
</tr>
<tr>
<td>Área regada (Ha)</td>
</tr>
<tr>
<td>Tipo de animales: Bovinos</td>
</tr>
<tr>
<td>No usuarios/año</td>
</tr>
<tr>
<td>Tipo de cultivo: Esterilizar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuentes de abastecimiento:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuente principal del abastecimiento</td>
</tr>
<tr>
<td>Fuentes secundarias del abastecimiento</td>
</tr>
</tbody>
</table>

| Tres veces al día. |

<table>
<thead>
<tr>
<th>DIAGNÓSTICO SANITARIO DE LA CAÍDA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

Condiciones del agua:

<table>
<thead>
<tr>
<th>Estado de la letrina?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charco de agua estancada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buey, oídos o estéril de ganado o su alrededor</td>
</tr>
<tr>
<td>Borde o gruta que permita el ingreso de agua superficial al mismo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condición del agua:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condición del agua:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Fuente de contaminación</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Cementerio</td>
</tr>
<tr>
<td>Situación de servicio</td>
</tr>
<tr>
<td>Lavadero de carros y motos</td>
</tr>
<tr>
<td>Pozos abandonados</td>
</tr>
<tr>
<td>Residuos sólidos</td>
</tr>
<tr>
<td>Residuos peligrosos</td>
</tr>
<tr>
<td>Campus de infiltración</td>
</tr>
<tr>
<td>Plantas de sacrificio</td>
</tr>
<tr>
<td>Lagunas de oxidación</td>
</tr>
<tr>
<td>Otros (especificar)</td>
</tr>
<tr>
<td>Residuos sólidos: Residuos domésticos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origen</th>
<th>Doméstico</th>
<th>Industrial</th>
<th>Agrícola</th>
<th>Ganadería</th>
<th>Hospitalario</th>
<th>Minero</th>
<th>Otro, Químico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disposición</th>
<th>Residuos especiales</th>
<th>Inineración</th>
<th>Compostaje</th>
<th>Botadero a cielo abierto</th>
<th>Reciclaje</th>
<th>Otro, Químico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Observaciones | Se hace extracción de agua tres veces al día aproximadamente |

| Croquis acceso al pozo | Bicleta. |

Observaciones generales: las fotografías se anexarán al documento.
Pozo N. 2: Señora Rosa

<table>
<thead>
<tr>
<th>Formulario Único Nacional para Inventario de Puntos de Agua Subterránea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre del proyecto: CALIBRACIÓN DE LA SUSTENIBILIDAD DEL RECURSO HÍDROLOGICO SUBTERRÁNEO</td>
</tr>
<tr>
<td>Fecha: 11/11/14</td>
</tr>
<tr>
<td>Diligenciado por: Poda F Sola P</td>
</tr>
<tr>
<td>Tipo de punto: Pozo</td>
</tr>
<tr>
<td>Condiciones del punto: Producción, Monitoreo</td>
</tr>
<tr>
<td>Recogida en campo: X</td>
</tr>
<tr>
<td>Comparto o arroyo:</td>
</tr>
<tr>
<td>Constructor:</td>
</tr>
<tr>
<td>Propietario:</td>
</tr>
<tr>
<td>Estudios anteriores:</td>
</tr>
<tr>
<td>Observaciones: Aljibe de aposición reducido de 300 m² se convierte en depósito de residuos sólidos (botellas plásticas, vegetación, protección)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propietario: Staff Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre: Señora Rosa</td>
</tr>
<tr>
<td>Municipio: Cota</td>
</tr>
<tr>
<td>Dirección: Vd. 4 Centro</td>
</tr>
<tr>
<td>Teléfono:</td>
</tr>
<tr>
<td>e-mail:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organización del punto:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre del concesionado:</td>
</tr>
<tr>
<td>Identificación del punto:</td>
</tr>
<tr>
<td>Localización del punto:</td>
</tr>
<tr>
<td>Departamento: Cundinamarca</td>
</tr>
<tr>
<td>Municipio: Cota</td>
</tr>
<tr>
<td>Vereda: Centro</td>
</tr>
<tr>
<td>Nombre del lugar (barrio, finca, predio):</td>
</tr>
<tr>
<td>Guanía hidrográfica:</td>
</tr>
<tr>
<td>Coordenadas:</td>
</tr>
<tr>
<td>Código: 2578m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topografía:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planicie: X</td>
</tr>
<tr>
<td>Altiplanicie:</td>
</tr>
<tr>
<td>Precordillera:</td>
</tr>
<tr>
<td>Ladera:</td>
</tr>
<tr>
<td>Colina:</td>
</tr>
<tr>
<td>Otra:</td>
</tr>
<tr>
<td>Geoformas:</td>
</tr>
<tr>
<td>Abaranco aluvial:</td>
</tr>
<tr>
<td>Caucho aluvial:</td>
</tr>
<tr>
<td>Llanura aluvial:</td>
</tr>
<tr>
<td>Terraza:</td>
</tr>
<tr>
<td>Duna:</td>
</tr>
<tr>
<td>Dollina:</td>
</tr>
<tr>
<td>Otra:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material de revestimiento:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerámica:</td>
</tr>
<tr>
<td>Mampostería:</td>
</tr>
<tr>
<td>Otro:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condiciones climáticas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodo húmedo:</td>
</tr>
<tr>
<td>Periodo seco:</td>
</tr>
<tr>
<td>Unidad geológica: Amanzim</td>
</tr>
</tbody>
</table>
Perforador

- **Diámetro exterior**
- **Diámetro interior**
- **Diámetro de perforación**
- **Profundidad** m
- **Largo** m
- **Ancho** m
- **Esta colmatado?**

Características de explotación

- **Método de extracción:**
 - Bomba sumergible
 - Bomba manual
 - Molino de viento
 - Compresor
 - Medidor de agua
 - Manómetro
 - Sondador natural
 - Manual

- **Tipo de energía:**
 - Eléctrica
 - Gasolina
 - ACPM
 - Básica
 - Otra
 - Qua?

Diseño del pozo: Diámetro y ubicación de los filtros

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Diámetro (m)</th>
<th>Profundidad (m)</th>
<th>Desde</th>
<th>Hasta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Se anota:

- **columna litológica**
- **Diseño del pozo**
- **pruebas de bombeo**
- **Registro geofísico**
- **Análisis químico**

Características hidrológicas

- **Regimen de bombeo**
- **Hora/día**
- **Día/semana**

Nivel medio del agua

<table>
<thead>
<tr>
<th>Volumen (m)</th>
<th>Tiempo de bombeo</th>
<th>Tiempo de descanso</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 m</td>
<td>1 hora</td>
<td></td>
</tr>
</tbody>
</table>

Método de medida del nivel del agua

- **Sonda eléctrica**
- **Cinta métrica**
- **Estimado**
- **Transductor de presión-driver**

Método de medida del caudal

- **Volumétrico**
- **Vertedero**
- **Micromedidor**

- **Estimado**
- **Orificio**
- **Manómetro**
- **Micromedidor**

- **Caudal (l/s)**

Tipo de construcción

- **Diámetro (m)**
- **Largo (m)**
- **Ancho (m)**
- **Profundidad (m)**
- **Capacidad (m³)**

<table>
<thead>
<tr>
<th>Tipo de construcción</th>
<th>Diámetro (m)</th>
<th>Largo (m)</th>
<th>Ancho (m)</th>
<th>Profundidad (m)</th>
<th>Capacidad (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embalse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanque</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubería</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Propiedades físicas-quinéticas
- pH: [Not available]
- Conductividad eléctrica (S/cm): [Not available]
- Temperatura: [Not available]
- EDT (m/L): [Not available]
- Redox-Bh: [Not available]

Problemas de calidad:
Se observa residuos sólidos flotando.

Actividad económica:
- Uso del agua: [Not available]
- Descripción del uso del agua:
 - No usuarios
 - De animales

Fuente de agua:
- Fuente principal del abastecimiento: Agua subterránea, caliente

Distancia
<table>
<thead>
<tr>
<th>S</th>
<th>NO</th>
<th>Dristancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Otra información:
- Existencia de una estanque: Sí
- Charco de agua estancada: [Not available]
- Baulas, charcos o estanque de ganado a su alrededor: [Not available]
- Borde o grieta que permita el ingreso de agua superficial al mismo nivel: [Not available]

Observaciones:
[Blank]
<table>
<thead>
<tr>
<th>Tiene cubierta adecuada?</th>
<th>S</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiene sello sanitario?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pozo de cemento alrededor de la captación?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carro alrededor de la instalación adecuado?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuentes puntuales de contaminación:

Cementerio	Distancia	0 km
Estación de servicio		
Lavadero de carro y motos		
Pozos abandonados		
Residuos sólidos		
Residuos peligrosos		
Campos de infiltración		
Plantas de sacrificio		
Lagunas de oxidación		
Otro-cual?		

Residuos sólidos:

<table>
<thead>
<tr>
<th>Origen</th>
<th>Domicilio</th>
<th>Industrial</th>
<th>Agrícola</th>
<th>Cemeterio</th>
<th>Hospitalario</th>
<th>Minero</th>
<th>Otro</th>
<th>Cual?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depósito</th>
<th>Residuos</th>
<th>Incineración</th>
<th>Compostaje</th>
<th>Bóxer a cielo abierto</th>
<th>Reciclaje</th>
<th>Otro-Cual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: El aljibe se encuentra cubierto de vegetación.

De aquí al pozo:

A pie

Observaciones generales:

Los fotogramas se anexan al final del documento.
FORMULARIO ÚNICO NACIONAL PARA INVENTARIO DE PUNTOS DE AGUA SUBTERRÁNEA

Nombre del proyecto: EVALUACIÓN DE LA VULNERABILIDAD DEL COTA C. UTILIZANDO EL MODELO D

Diligenciado por: POZO N. 3: Pedro Pablo Cantor

Tipo de punto: Pozo: ☐ / Ajuibe: ☒ / Manantial: ☐ / Plézmetro: ☐
Consecutivo: 5

Condiciones del punto: Productivo ☒ / Inactivo ☐

Recolección en campo: Nombre:

Propietario jurídico:

Nombre:

Dirección:

Teléfono:

(e-mail:)

Fecha: 06/04/19

Observaciones:

la información es suministrada por el dueño del logro

Propietario persona natural:

Nombre: Pedro Pablo Cantor

D. Identidad: C.I.:

Municipio: Cota

Dirección:

Teléfono:

(e-mail:)

Propietario persona jurídica:

Nombre:

Dirección:

Teléfono:

(e-mail:)

Legalización del punto:

Fecha de expedición:

Nombre del concesionario:

Identificación del punto:

Localización del punto:

Coordenadas:

Biparficación de ref:

Departamento: Cundinamarca

Municipio: Cota

Vereda: La Moya

Nombre del lugar (barrio, finca, predio):

Cota: 2578m

Topografía:

Depresión: ☐ / Elevación: ☐

Planoide: ☒ / Altiplanoide: ☐

Predoncino: ☐ / Ladera: ☐

Colina: ☐ / Otra: ☐

Condición climática:

Periodo húmedo: ☐ / Periodo seco: ☐

Unidad geológica: Sabana

Material de revestimiento:

Datos de construcción:

Este formulario es propiedad del municipio y sus copias no se podrán extraviar.
Características de explotación
- Método de extracción:
 - Bomba sumergible: ✔
 - Bomba manual: ☐
 - Molino de viento: ☐
 - Compresor: ☐
 - Motobomba: ☐
 - Burguesía natural: ☐
 - Manual: ☐

- Material: Ladrillo
- Hidrocarburo: no
- Otros: no

Clase de bomba
- Modelos: Manual, mecánico
- Tubería de descarga: no

Diseño del pozo: Diámetro y ubicación de los filtros

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Diámetro (mm)</th>
<th>Profundidad</th>
<th>Dosis</th>
<th>Hasta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Se anexa:
- Columna lito-bioclimática
- Diseño del pozo
- Pruebas de bombeo
- Registro geofísico
- Análisis químico

Características hidrolíticas
- Régimen de bombeo: continuo
- Horas/día: 24
- Días/semana: 7

Nivel medio del agua
- Nivel medio: 2 m
- Tiempo de bombeo: 2 h
- Horas: 12
- Tiempo desde el apagado de la bomba: 2 h

Método de medida del nivel del agua
- Métodos: Sonda eléctrica, cinta métrica

Método de medida del caudal
- Volumétrico (m³/h)
- Vertedero (m³/h)
- Micromódulo (m³/h)
- Estimation (m³/h)
- Oríndex (m³/h)
- Micromedidor (m³/h)
- Micromedidor (m³/h)

Caudal estimado
- Volumen del sistema: 1 m³
- Caudal de almacenamiento: 1 m³
- Caudal estimado: 1 m³

Construcciones asociadas a la explotación

<table>
<thead>
<tr>
<th>Tipo de construcción</th>
<th>Diámetro (m)</th>
<th>Largo (m)</th>
<th>Ancho (m)</th>
<th>Profundidad (m)</th>
<th>Capacidad (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embalse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanque</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Árboles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubería</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de manantial:</td>
<td>Permanente:</td>
<td>Método de surgencia:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goteo</td>
<td>Perenne</td>
<td>Riego lúdico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtación</td>
<td>Estacional</td>
<td>Contacto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro-otro</td>
<td>Intermitente</td>
<td>Sin información</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:

<table>
<thead>
<tr>
<th>Métodos de muestreo:</th>
<th>Propiedades fisicoquímicas:</th>
<th>Propiedades organolépticas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>pH</td>
<td>Color</td>
</tr>
<tr>
<td>Bombeo</td>
<td>Conductividad eléctrica (S/cm)</td>
<td>Nocivo</td>
</tr>
<tr>
<td>Otro</td>
<td>Temperatura °C</td>
<td>Amarillo</td>
</tr>
<tr>
<td></td>
<td>SD7 (m/L)</td>
<td>Otro</td>
</tr>
<tr>
<td></td>
<td>Redox-Eh</td>
<td>Otro</td>
</tr>
</tbody>
</table>

Muestra para laboratorio:

- S
- No

Tipo de análisis:

- Fisicoquímico
- Microbiológico
- Tóxico

Lugar de muestreo:

- Bosque de pozo
- Tanque
- Llave
- Nacimiento
- Otro

Problemas de calidad:

El agua se encuentra con residuos de vegetación.

Descripción del uso del agua:

- Uso del agua: Agua potable
- Abastecimiento público: No usuarios
- Uso doméstico: No usuarios
- Agricultura: 10 ha
- Recreación: No usuarios
- Turismo: No usuarios
- Industrial: No usuarios
- Transporte: No usuarios
- Otro: No usuarios

Fuentes de abastecimiento:

- Fuente principal: Río
- Fuentes secundarias: No existen
- Frecuencia de abastecimiento: Diaria

Diagnóstico sanitario de la captación:

- No se presenta un latrina
- Charco de agua estancada: X
- Basura, criaderos o estéreo de ganado a su alrededor: S
- Borde o grieta que permita el ingreso de agua superficial al mismo:

<table>
<thead>
<tr>
<th>3</th>
<th>NO</th>
<th>Distancia m</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>S</td>
<td>m</td>
</tr>
</tbody>
</table>

Finalizó el muestreo:
<table>
<thead>
<tr>
<th>Tiene cubierta adecuada?</th>
<th>S</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiene sello sanitario?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Piso de cemento alrededor de la captación?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cerco alrededor de la instalación adecuado?</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Fuentes puntuales de contaminación:

- Cementerio
- Estación de servicio
- Lavadero de carro y motos
- Pozos abandonados
- Residuos sólidos
- Residuos peligrosos
- Campos de infiltración
- Plantas de sacrificio
- Lagunas de oxidación
- Otro-qué?

Residuos sólidos:

<table>
<thead>
<tr>
<th>Origen</th>
<th>Domestico</th>
<th>Industrial</th>
<th>Agropecuaria</th>
<th>Ganadero</th>
<th>Hospitalario</th>
<th>Minero</th>
<th>Otro-qué</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribución:

<table>
<thead>
<tr>
<th>Disposición</th>
<th>Residuos especiales</th>
<th>Incineración</th>
<th>Compostaje</th>
<th>Botadero a cielo abierto</th>
<th>Reciclaje</th>
<th>Otro-qué</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:

No se encuentra con cerza, presenta un riesgo

Croqui-oxea al pozo:

Bicicleta, pie.

Observaciones generales:

Las fotografías se anexan en el documento final.
Pozo N. 4: Andro Salgel

Establecimiento de información

- **Nombre del establecimiento**: Andro Salgel
- **Dirección**:닥타 안고 안간

Propietario persona natural

- **Nombre**: Andro Salgel
- **Dirección**:닥타 안고 안간

Legalización del punto

- **Fecha de expedición**:
- **Nombre del concesionado**: Andro Salgel
- **Municipio**:닥타
- **Vereda**: El Ávra
- **Nombre del lugar (quinta, finca, predio)**: Andro Salgel
- **Departamento**: Curinomoro
- **Código**: N X 905 591

Topografía

- **Altura**: Altiplano
- **Topografía**: Ladera

Geoformas

- **Depresión**: Abarico aluvial
- **Alturales**: Duna

Condición climática

- **Período húmedo**: X

Material de revestimiento

<table>
<thead>
<tr>
<th>Otra</th>
<th>Dolina</th>
<th>Ladera</th>
<th>Piedmonte</th>
<th>Altiplanicie</th>
<th>Rápido</th>
<th>Depresión</th>
<th>Geoformas</th>
<th>Altura</th>
<th>Condición climática</th>
<th>Material de revestimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dolina</td>
<td>Ladera</td>
<td>Piedmonte</td>
<td>Altiplanicie</td>
<td>Rápido</td>
<td>Depresión</td>
<td>Geoformas</td>
<td>Altura</td>
<td>Condition climática</td>
<td>Material de revestimiento</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Otras características de la poza y sus usos

- **Datos de la construcción**:
- **Material de revestimiento**:

<table>
<thead>
<tr>
<th>Perforador</th>
<th>Pedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladrillo</td>
<td></td>
</tr>
<tr>
<td>Acero y tipo</td>
<td></td>
</tr>
<tr>
<td>Hierro galvanizado</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>Madera</td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td></td>
</tr>
<tr>
<td>Otro colocado?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características de explotación</th>
<th>Método de extracción:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bomba súmergeable</td>
</tr>
<tr>
<td></td>
<td>Bomba manual</td>
</tr>
<tr>
<td></td>
<td>Molino de viento</td>
</tr>
<tr>
<td></td>
<td>Compresor</td>
</tr>
<tr>
<td></td>
<td>Motobomba</td>
</tr>
<tr>
<td></td>
<td>Sargento natural</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase de bomba:</th>
<th>Modelo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubería de descarga</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diseño del pozo: Diámetro y ubicación de los filtros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramo</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Se anexa:</th>
<th>columna litológica</th>
<th>Diseño del pozo</th>
<th>pruebas de bombeo</th>
<th>Registro geofísico</th>
<th>Análisis químico</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Características hidrológicas</th>
<th>régimen de bombeo</th>
<th>Horas/día</th>
<th>Días/semana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel medio del agua</th>
<th>m</th>
<th>Tiempo de bombeo</th>
<th>Horas</th>
<th>Tiempo desde el apagado de la bomba</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Método de medida del nivel del agua</th>
<th>Sonda eléctrica</th>
<th>Cinta métrica</th>
<th>Estimado</th>
<th>Transductor de presión-driver</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Método de medida del caudal:</th>
<th>Ator volumétrico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumétrico (l/s)</td>
<td></td>
</tr>
<tr>
<td>Vertedero (l/s)</td>
<td></td>
</tr>
<tr>
<td>Micrometrímetro (l/s)</td>
<td></td>
</tr>
<tr>
<td>Estimado (l/s)</td>
<td></td>
</tr>
<tr>
<td>Ortóforo (l/s)</td>
<td></td>
</tr>
<tr>
<td>Manómetro</td>
<td></td>
</tr>
<tr>
<td>Micromedidor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de construcción</th>
<th>Diámetro (m)</th>
<th>Largo (m)</th>
<th>Ancho (m)</th>
<th>Profundidad (m)</th>
<th>Capacidad (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embalse</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Tanque</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubería</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tipo de manantial:
- Relief
- Estacional
- Intermitente
- Sin información

Observaciones:
- Problemas de calidad:
 Se encuentra brumación de estanque de ganado

Lugar de muestreo:
- Bocas de pozo
- Río

Métodos de muestreo:
- Manual
- Bomba
- Otro

Propiedades fisicoquímicas:
- pH
- Conductividad eléctrica (S/cm)
- Temperatura (°C)
- SDT (mg/L)
- Redox Eh

Propiedades organolépticas:
- Color
- Apariencia
- Olor

Muestra para laboratorio:
- SÍ

Diagnóstico sanitario de la captación
- Ejide o una letrina?
- Charco de agua estancada
- Basura, criaderos o estanque de ganado a su alrededor
- Borde o goteo que permita el ingreso de agua superficial al mismo

Condición del agua:
Tiene cobertura adecuada?	S	NO
Tienen sello sanitario?	X	
Plato de cemento alrededor de la captación?	X	
Cerco alrededor de la instalación adecuado?	X	

Fuentes puntales de contaminación:

Cementerio	Distancia
Estación de servicio	
Lavadero de carros y motos	
Pozos abandonados	
Residuos sólidos	
Residuos peligrosos	
Campus de infiltración	
Planta de sacrificio	
Lluvias de oxidación	
Otro-qué?	

<table>
<thead>
<tr>
<th>Residuos sólido:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen</td>
</tr>
<tr>
<td>Exposición</td>
</tr>
</tbody>
</table>

Observaciones: El agua se utiliza para la ganadería.

<table>
<thead>
<tr>
<th>Observaciones generales:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los fotógrafos se quedan en el momento final.</td>
</tr>
</tbody>
</table>

A Pie
POZO N. 5: DORA RUIZ

Información del punto:
- **Nombre del proyecto:** EVALUACIÓN DE LA VULNERABILIDAD DEL RÍO SUBTERRÁNEO DEL M. DE COTA 2. UTILIZANDO EL MÓDULO DRASTIC
- **Fecha:** 4/5/13
- **Dirección por:** Pablo F. Solá

Tipo de punto:
- **Pozo:** X
- **Aljibe:** □
- **Monoral:** □
- **Plazómetro:** □

Condiciones del punto:
- **Productivo:** □
- **Reserva:** □
- **Monitoreo:** □
- **Abandonado:** □
- **Inválido:** □

Recopilada en campo:
- **Nombre del propietario:** Dora Ruiz
- **Dirección:** Dora

Observaciones:
No fue posible adquirir información puesto que el arroyo es reducido.

Propietario persona natural:
- **Nombre:** Dora Ruiz
- **Identificación:** Dora Ruiz
- **Municipio:** Cota
- **Dirección:** Cota
- **Teléfono:** Cota
- **E-mail:** Cota

Propietario persona jurídica:
- **Nombre:** Dora Ruiz
- **Rut:** Dora Ruiz
- **NIT:** Dora Ruiz
- **Rep. Legal:** Dora Ruiz
- **Dirección:** Dora Ruiz
- **Teléfono:** Dora Ruiz
- **E-mail:** Dora Ruiz

Legalización del punto:
- **Fecha de expedición:** Dora Ruiz
- **Resolución No.:** Dora Ruiz

Localización del punto:
- **Departamento:** Antioquia
- **Municipio:** Cota
- **Vereda:** Dora Ruiz
- **Origen coordenadas planas:** E: 101,44986
- **Coord. hidrográfica:** N: 49,9431
- **Cota:** 2,561

Datos de la construcción:
- **Topografía:** Abarán aluvial
- **Plenitud:** Abarán aluvial
- **Ladera:** Dura
- **Colina:** Dolina
- **Otra:** Dura

Condición climática:
- **Período húmedo:** X
- **Período seco:** □

Unidad geológica:
- **E. Sabana**
<table>
<thead>
<tr>
<th>Perforador</th>
<th>Pedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladrillo</td>
<td></td>
</tr>
<tr>
<td>Acero y tipo</td>
<td></td>
</tr>
<tr>
<td>Hierro galvanizado</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Madera</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cemento</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Estocolmado?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características de explotación</th>
<th>Método de extracción:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba sumergible</td>
<td></td>
</tr>
<tr>
<td>Bomba manual</td>
<td></td>
</tr>
<tr>
<td>Molino de viento</td>
<td></td>
</tr>
<tr>
<td>Compresor</td>
<td></td>
</tr>
<tr>
<td>Motor bomba</td>
<td></td>
</tr>
<tr>
<td>Surjadera natural</td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td></td>
</tr>
<tr>
<td>Tipo de energía</td>
<td></td>
</tr>
<tr>
<td>Eléctrica</td>
<td></td>
</tr>
<tr>
<td>Gasolina</td>
<td></td>
</tr>
<tr>
<td>ACM</td>
<td></td>
</tr>
<tr>
<td>Eólica</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td></td>
</tr>
<tr>
<td>Qul?</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Tubería de descarga:</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diseño del pozo: Diámetro y ubicación de los filtros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramo</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senda eléctrica</th>
<th>Onda metría</th>
<th>Estimado</th>
<th>Transductor de presión/driver</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Características hidráulicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel medio del agua 5 50 m</td>
</tr>
<tr>
<td>Tiempo de bombeo 2 2 Horas</td>
</tr>
<tr>
<td>Tiempo desde el apagado de la bomba 1 1 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Método de medida del nivel del agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Senda eléctrica</td>
</tr>
<tr>
<td>Onda metría</td>
</tr>
<tr>
<td>Estimado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Método de medida del caudal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumétrico (1/4)</td>
</tr>
<tr>
<td>Vertedero (1/4)</td>
</tr>
<tr>
<td>Micromeditador (1/4)</td>
</tr>
<tr>
<td>Estimado</td>
</tr>
<tr>
<td>Crítico</td>
</tr>
<tr>
<td>Manómetro</td>
</tr>
<tr>
<td>Micromeditador</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caudal (1/4)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tipo de construcción</th>
<th>Diámetro (m)</th>
<th>Largo (m)</th>
<th>Ancho (m)</th>
<th>Profundidad (m)</th>
<th>Capacidad (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senda eléctrica</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Otra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otro</th>
</tr>
</thead>
</table>

149
Tipo de manantial:
- Goteo
- Filtración
- Otro, cuál?

Permanencia:
- Pereza
- Estacional
- Intermitente
- Sin información

Método de surgencia:
- Riego láctico
- Contenido
- Sin información
- Otro, cuál?

Observaciones:

Métodos de muestreo:
- Manual
- Bomba
- Otro, cuál?

Propiedades fisicoquímicas:
- pH
- Conductividad eléctrica (μS/cm)
- Temperatura de la bomba (°C)
- SEI (μS/L)
- Resto pH

Apariencia:
- Color
- Aroma
- Olor

Tipo de análisis:
- Fisicoquímico
- Microbiológico
- Isotópico

Lugar del muestreo:
- Bocas de pozo
- Tanque
- Uso
- Nacimiento
- Otro

Problemas de calidad:

Actividad económica:
- Uso del agua
- Abastecimiento público
- Uso doméstico
- Agropecuario
- Recreativo
- Industrial
- Transporte
- Otro

Descripción del uso del agua:
- No usuarios
- No usuarios
- Área regada (Ha)
- Tipo de animales
- No usuarios/ año
- Otra

Tipo de cultivo:
- No de cultivos

Fuentes de abastecimiento:
- Fuente principal del abastecimiento
- Fuente secundaria del abastecimiento
- Frecuencia de abastecimiento (radiación

Indicadores sanitarios de la captación:
- Existe una latrina?
- Charco de agua estancada
- Basura, criaderos o estéril de ganado a su alrededor
- Borde o grieta que permite el ingreso de agua superficial al mismo

<table>
<thead>
<tr>
<th>S</th>
<th>NO</th>
<th>Distancia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Condición del agua:

150
<table>
<thead>
<tr>
<th>Fuente de contaminación</th>
<th>Distancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cementerio</td>
<td></td>
</tr>
<tr>
<td>Estación de servicio</td>
<td></td>
</tr>
<tr>
<td>Lavadero de carros y motos</td>
<td></td>
</tr>
<tr>
<td>Pozos abandonados</td>
<td></td>
</tr>
<tr>
<td>Residuos sólidos</td>
<td></td>
</tr>
<tr>
<td>Residuos peligrosos</td>
<td></td>
</tr>
<tr>
<td>Campus de infiltración</td>
<td></td>
</tr>
<tr>
<td>Plantas de sacrificio</td>
<td></td>
</tr>
<tr>
<td>Lagunas de cedación</td>
<td></td>
</tr>
<tr>
<td>Otro-qué?</td>
<td></td>
</tr>
</tbody>
</table>

| Residuos sólidos: | | | | | | |
|-------------------|| | | | | |
| Origen | Doméstico | Industrial | Agrícola | Ganadería | Hospitalario | Minero | Otro-qué?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposición</td>
<td>Restos de esp.</td>
<td>Invernadero</td>
<td>Compostaje</td>
<td>Reciclaje</td>
<td>Otro-qué?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:

Croquile acceso al pozos:
Bicicleta

Observaciones generales:
Los fotografías se anexan en el documento final.
Pozo N. 6: Hacienda Acalá

Información general
- **Nombre del proyecto:** Evaluación de la vulnerabilidad del recurso hídrico del Módulo de Cundinamarca
- **Fecha:** 14/01/15
- **Consecutivo:** 6

Condición del punto
- **Tipo de punto:** Pozo
- **Producción:**
- **Reserva:**
- **Abandono:**
- **Inactivo:**

Propietario persona natural
- **Nombre:** Hacienda Acalá
- **D. Identidad:**
- **Municipio:** Cota
- **Dirección:**
- **Teléfono:**
- **e-mail:**

Legalización del punto
- **Fecha de expedición:**
- **Resolución No.:**
- **Vendimiento:**

Topografía
- **Depresión:**
- **Planís:**
- **Altimar:**
- **Piedemonte:**
- **Cotilina:**
- **Otra:**

Datos de la construcción
- **Geotipo:**
- **Material de relleno:**

Observaciones
La información fue restringida.
<table>
<thead>
<tr>
<th>Características de explotación</th>
<th>Método de extracción</th>
<th>Tipo de energía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro exterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro interior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro de perforación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Este colmado?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Clase de bomba: | | |
| Profundidad de extracción: | | |

<table>
<thead>
<tr>
<th>Diseño del pozo: Diámetro y ubicación de los filtros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramo</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Se anexa:</th>
</tr>
</thead>
<tbody>
<tr>
<td>columna litológica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características hidráulicas</th>
<th>régimen de bombeo</th>
<th>Horas/día</th>
<th>Días/semana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel medio del agua</td>
<td></td>
<td>Tiempo de bombeo</td>
<td>Horas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Método de medida del nivel del agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonda eléctrica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Método de medida del caudal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumétrico (l/s)</td>
</tr>
<tr>
<td>Vertedero (l/s)</td>
</tr>
<tr>
<td>Micromolínmetro (l/s)</td>
</tr>
<tr>
<td>Micromolínmetro (l/s)</td>
</tr>
<tr>
<td>Micromolínmetro (l/s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otros:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de construcción</td>
</tr>
<tr>
<td>Embalse</td>
</tr>
<tr>
<td>Tanque</td>
</tr>
<tr>
<td>Alberca</td>
</tr>
<tr>
<td>Tubería</td>
</tr>
</tbody>
</table>

153
Tipo de manantial:
- Corteo
- Perene
- Estacional
- Intermittente
- Sin información
- Otro

Permanencia:
- Rápido
- Lento
- Sin información
- Otro

Método de surgida:
- Riego
- Contado
- Sin información
- Otro

Observaciones:

Métodos de muestreo:
- Manual
- Bombeo
- Otro

Propiedades fisicoquímicas:
- pH
- Conductividad eléctrica (9 cm)
- Temperatura
- Dílución (ml/L)
- Redox-Eh

Propiedades organolépticas:
- Color
 - Incoloro
 - Amarillo
 - Café
- Apariencia
 - Clara
 - turbia
 - Otra
- Olor
 - Inolora
 - Fétido
 - Otra

Muestra para laboratorio:
- S
- No

Tipo de análisis:
- Físicoquímico
- Microbiológico
- Isotópico

Lugar de muestreo:
- Boca de pozo
- Tajo
- Llave
- Nacimiento
- Otro

Problemas de calidad:

Actividad económica:
- Uso del agua
 - Abastecimiento público
 - Uso doméstico
 - Foro agrícola
 - Pesca
 - Recreación
 - Industrial
 - Transporte
 - Otro

Descripción del uso del agua
- No usuarios
- Usuarios
- Área regada (Ha)
- Tipo de cultivo: lechuga
- Tipo de animales: bovino
- Tipo de usuario: no usuarios/ año

Fuentes de abastecimiento:
- Fuente principal del abastecimiento:
- Fuentes secundarias del abastecimiento:

Frecuencia de abastecimiento (racionamiento):

Diagnóstico sanitario de la captación:
- Ojo
- NO
- Dista m

Biótica una lámina?
- Charco de agua estancada
- Rastro, criaderos o estéreo con ganado o su
- Alrededor
- Borde o grieta que permita el ingreso de agua
- Superficial al mismo

Conclusiones del muestre: 154
<table>
<thead>
<tr>
<th>Tiene cubierta adecuada?</th>
<th>S</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiene sello sanitario?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piso de cemento alrededor de la captación?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerco alrededor de la instalación adecuado?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuentes puntuales de contaminación:

- Cementerio
- Estación de servicio
- Lavadero de carro y motos
- Pozos abandonados
- Residuos sólidos
- Residuos peligrosos
- Campus de infiltración
- Puntas de acodido
- Lagunas de oxidación
- Otro-cual?

Residuos sólidos:

<table>
<thead>
<tr>
<th>Origen</th>
<th>Doméstico</th>
<th>Industrial</th>
<th>Agrícola</th>
<th>Ganadería</th>
<th>Hospitalario</th>
<th>Minero</th>
<th>Otro-Qual</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Disposición</th>
<th>Residuos especiales</th>
<th>Incineración</th>
<th>Compostaje</th>
<th>Reemplazar a cielo abierto</th>
<th>Tejidos</th>
<th>Otro-Qual</th>
</tr>
</thead>
</table>

Observaciones:

El pozo se encuentra cubierto con una lámina de aluminio y protegido con concreto.

Croquis-oxoxo del pozo

Bicicleta

Observaciones generales:

Las fotografías se anexan al final del documento.